
NO. 75 U.S. Edition:
International Edition:

$2.50
$3.50 SEPTEMBER 1984

for the Serious Computerist

v - - y

!

'‘■hS'S-

Structure Tree Utility
Introduction to FORTH
FORTH Multi-Tasking

Time Series Forecasting
TWERP

FLASH!
Gets the Gold

at the Computer Olympics
The Styles Electric Works 1541

FLASH! dashed off with the gold at
the Computer Olympics here.

The 1541 FLASH! loaded and saved
programs and files three times faster
than an unenhanced Commodore

« 1541 disk drive could.... faster than Faster than any other
any other disk disk drive with com-
H r iv a ” patible disk format.
U I IV c . . . _________ Three times faster!

The device delighted the home
crowd, which watched the 1541
FLASH! set a meet record, and leave
its competition in the dust.

Once installed, the 1541 FLASH! is
transparent. Computer operations
all remain unaffected as it speeds up
every disk-related function. The
FLASH! is a permanent installation
with both a software (ROM) and a
hardware component. Through key­
board commands or a hardware
switch, you can even return to the
old, slow loading method—if you
really want to.

And there is nothing new to learn
for the FLASH! No special tricks or

techniques. Once it’s in, just watch
it go.

But if you’re really serious about
programming, the 1541 FLASH! is a
gold mine. The manual will show you
how to write software allowing data
transfer to and from the 1541 disk
drive at speeds up to 10 times the
normal.

For programs that usually load
with a “ ‘*’,8,1 ” command, just hit
Shift/Run-Stop. A spreadsheet pro­
gram like BUSICALC 3 then loads
in about 25 seconds.

The 1541 FLASH! even adds 21 ex­
tra commands for the Commodore
64 user. Some of these include edit­
ing, programming and loading com­
mands, as well as “DOS Wedge”
commands. You can ignore all these
commands, though, and just enjoy
the rapid disk operations.

It wowed the crowd at the Com­
puter Olympics. Once you see its
sheer speed, you’ll know why. Call
its coach, Styles Electric Works, to
place your order or to get more info.

1541 FLASH!, an add-on assembly, for the Commodore 64/1541 costs only $79.95.

nj Skyles Electric Works
\TI 2 3 1 E South Whisman Road

Mountain View, CA 94041
(4 1 5)9 6 5 -1 7 3 5

Available from your local
Commodore 64 dealer or
call 1-800-227-9998.
1541 FLASH! is a trademark of Skyles Electric Works.
Commodore 64 is a trademark of Commodore.

Want to become an Apple expert?

Join the club.
A.P.P.L.E.

Apple PugetSound Program Library Exchange
The Apple PugetSound Program Library Exchange is the world’s first, oldest, and largest Apple
computer user group. Our membership is comprised o f Apple enthusiasts throughout the world, and
we provide support for all levels o f technical ability, from beginner to seasoned program author.

A membership in A .P .P .L .E . will bring the Apple owner 7 day per week hotline privileges for techni­
cal assistance when you need it, plus the international magazine Call— A .P .P .L .E ., and incredible
discounts on our fully supported, low priced, world famous software products, and hardware.

A .P .P .L .E . is a member owned, non-profit service organization. Write today for a free copy of our
magazine and club information, or join by filling out the enrollment coupon

exciting games
useful utilities
high quality graphics
finance and education

VALUESOFT
A product whose time has come.

Fully supported, guaranteed, high quality software at low prices.

VALUESOFT INCLUDES:2wor<l"ro“iSingproems
Uncommon at

$ 1 2 . 5 0 per disk,
program contains its own
document on disk.

The quality VALUESOFT line of software is available through the Apple
PugetSound Program Library Exchange.

NEW lie OWNER?
programs for the He now in stock

Graphics Utilities
Word Processing Database

Join Now and Receive 10 FREE (5_1/4)

~ l
fo A.P.P.L.E.

pioneering Apple computing

since 1978.
M ail (0

A P P L E

2 1 2 4 6 6 8 th A v e .S .

K en t. W A 9 8032

{206)872-2245

or ca ll o u r toll-free n u m b e r

1-800-426-3667

(24 Mrs. O rde rs O n ly)

C M E M B E R S H IP S 26 one-tim e

a p p lic a tio n fee + S25 first year

d ue s . S 5 1

~ F R E E IN FO +■ C a l l- A .P .P L E

P lease send free in fo rm a tio n

N a m e ____

A ddress

C i t y ____

S ta te ___

Phone

. Z i p ___________

M/C V ISA *

Exp. Date__

A d d it io n a l fo re ign p o s ta g e re q u ired
fo r m e m b e rs h ip o u ts id e the U S

J

Featured This Month

This month we enter into the world of FORTH, in addition
to a varied selection of other exciting subjects, programs
and projects.

Time-Series Forecasting — enter into the world of
Nostradamus with the sagacity of Einstein. This program
uses various forecasting techniques to predict the future,
from interest rates to the Dow Jones. Includes versions for
the Apple, Atari, Commodore 64 and CoCo.

Introduction to FORTH — a look at the world of
FORTH. Who would be interested in FORTH, why, what
features does it offer, its uses and implementations.

Textfile Write Edit Read Program — for all of you Apple
users who have cursed when they wanted to read a text file
and only got an error message. This program is an
invaluable help in writing, reading, and editing text files.

Multi-Tasking for FORTH — this program allows
seperate tasks to run in the ’background’ while still having
the FORTH interpreter available in the 'foreground.' A
concept and program with powerful implications.

Transforming dBase II Files — find out how to alter
your dBase II files so that you can use them with
Wordstar/Mailmerge to produce personalized letter forms.

Stepper — who has step-traced his way through an
assembler program only to have to suffer through jumps to
monitor routines? This program saves from this time
consuming annoyance, making debugging a little more
enjoyable.

Structure Tree Utility — nothing is worse than
forgetting the calling structure of a word in FORTH. With
this program you can easily recall which came first — the
chicken or the egg.

68000 Exception Processing — how to take advantage
of the 68000's capabilities, software exception processing
in general and hardware exception processing for the
SAGE.

Graphic Print for C64 Part 3 — the final installment of
this excellent series provides the programs and techniques
required to generate full color pictures on your standard
printer!

Approximating the Square Root of the Sum of
Squares — a fast and time saving method for dealing
w ith that candidate for 'th e m ost often used
calculation' — the square root.

IMCftO

„ „S£LF 0" C «U« COMPUTW" pv,s FO
. . . M ■ » SBOUL° » > - " * • *

H I..H use"

O'
» FIRST LEVEL D

A PERFECT package

MASTER DIAGNOSTICS

There is only one thing / s
more important than your ^ p C Ip p K Z

Maintaining it
MOTHERBOARD ROM IfST
APPLESOFT CAW) fFSr
INTEGER CARO TfST
MOTHERBOARD RAM TEST
I6K MM CARO TEST’
AUX RAH TEST-
80 COLUMN CARD TEST"
PARALLEL CARO TEST
SPEAKER FUNCTION TEST
SQUARE WAVE MOOULAUON
ON BOARD HELP

THE TESTS INCLilOE
DISK ORIV? SPEED CALIBRATION
DRIVE HEAD READ/WRITE TEST
WRITE PROTECT SWITCH TEST
DRIVE H€A0 CLEANING ROUTINES
DISK 0WVE MAINTENANCE
0C HAVES MICR0M00EM H TEST
PAOOLE 4 SPEAKER TEST
p toou 4 button test
PAOOLE DRIFT *EST
INTERNAL MAINTENANCE
FORTY PACE MANUAL

MONITOR SKEWING TESTS
MONITOR 4 MOOULATOR
CALIBRATION
MONITOR TEXT PAGE TEST
MONITOR TEST PATTERN
MONITOR 4 TV WE ALIGNMENT
L0 RES COLOR TESTS
HI RES COUW TESTS
LISSAJ0US PATTERNS
RNO H(RES COLOR GENERATOR
GENERAL MAINTENANCE
•APPLE III

HOW MANY DISKETTES HAVE YOU INITIALIZED WITH YOUR OISK ORIVES HUNNING TOO FAST OB
TOO SLOW’ THINK ABOUT WHAT THAT COULD MEAN

OIO YOU KNOW THAT THE OR1VE SPEEO OF YOUR APPLE SHOULD BE AS CLOSE TO
300 RPM AS POSSIBLE? LIKE A RECORO OR TAPE SYSTEM V ABIES WITH MOTOR SPEED
SO DOES A DISKETTE

WHEN WAS THE LAST TIME YOU CLEANED THE READ,'WHITE HEAOS OF YOUR ORIVES?
THEY SHOULD HAVE BEEN CLEANEO LAST MONTH. ANO WITH OUR PROGRAMMED
UTILITIES YOU COULO DO SO AT THE PUSH OF A BUTTON

MOW ABOUT THE WHITE PROTECT SWITCH? IS IT WORKING PROPERLY SO YOU WONT
DESTROY YOUR PROGRAM OISKETTE OR PROTECTED DATA?

THEBE S LOTS MORE ANO IT WILL ONLY TAKE IS MINUTES A MONTH TO KEEP YOUR HIGH
TECHNOLOGY EOUIPMENT RUNNING AT HIGH PERFORMANCE. PREVENT PROBLEMS OR OIAGNOSE
PROBLEMS AND SAVE YOURSELF ONE OF THOSE OAYS

WITH MASTER DIAGNOSTICS ANYONE CAN DO IT.

THE PROGRAM THAT PAYS FOR ITSELF

W HEN O R D ER IN G SPEC IFY
version II & II plus or version l ie

□ master diagnostics $55.00

□ master diagnostics + plus $ 75.00

D IA L 1 - B O O - B 3 5 - 2 2 4 6

C T n n r - T * Ptwa pnwxMs e-wytftng nMtttd » maintain your compute'
Th* emir* pKtuga <(housed in our wn moUMd cm* to prefect againM ««« *tectnc>ty,
>-r«y and affwr contaminarw.

• " t h ? 3jISoiSoSTlCS OISKETTE • CRT SCREEN CLEANER
• FORTY PMj E PROCEDURE MANUAL • COMPUTER/DRIVE HOUSING CLEANER
• HEAD CLEANING KIT - “ •• RE USEABLE CHAMOIS TIPPED WANOS

h llK R O M
Technical Products, Inc.

25 Prospect Street, Leominster MA 01453

2 MICRO No. 75 ■ September 1984

X f Buy this 68000 computer,
Tand we’ll give you a 65C02...free.

The MTU-140 has always
been a good deal, because it ’s
such a versatile computer.

; Now when you purchase an
MTU-140 ($3995) you get the
new 65C02 processor chip free.
And, by adding the DATA-
M OVER board ($1080) you’ll
have a 68000 com puter to b o o t.
.. .plus a total of 335KB RAM
to share between them. The
65C02 is ju st like the 6502 plus
8 new instructions and 2 new
addressing modes using the
latest high speed CMOS
technology. With the CODOS/
DMXMON operating system ,
you choose which processor is
in con trol. . . or have both
running simultaneously, each
perform ing flaw lessly . . . the
way MTU com puters have
always worked.

Our custom ers are sold on
the MTU-140. They know we
designed it for thinking people
.. .to extend their abilities.
They have found it easy to
custom ize for their own needs
.. .providing solutions they had
not thought possible. We think
you will a g re e . . . the MTU-140
is tailor-m ade for people who
need their own professional

! computer.
| The MTU-140 is fast. At the

touch of a button, you can load

32KB in ju st 2.6 seconds. . . and
another 20KB in ju st 1 second!
Plus, both C PU ’s can perform
other tasks during disk opera-

i tions . . . even service
interrupts. Few computers
offer this freedom .. . none with
both 65C02 and 68000
processors! Equipped with the
DATAMOVER, the MTU-140
provides:
• 8MHz 68000 plus 256KB RAM

with 2 DMA ports
• 1MHz 65C02 plus 80KB RAM

with multiple DMA ports
• Dual 1MB 8" Floppies lor

ultra-reliable operation
• DMA disk operations into

memory, no CPU interference
• DMA hi-res Graphics/Text

display, no CPU interference
• 96 key detached keyboard with

5 separate cursor keys
• 8-bit D/A speech and music

port
• Fiber optic light pen
• 2 Parallel, 1 serial port
• Internal expansion card slots
• CODOS/DMXMON Operating

system using device inde­
pendent channels

• Full screen, bidirectional
scroll editor, handles 1MB
files

• MTU-BASIC with graphic &
disk extensions

• Communications with at­
tended/unattended use—
source available

• Graphic editor, slideshow
presentation

| • 4-part harmony instrument
I synthesizer music

• Over 50 machine language
utilities

Choose from our extensive
selection of so ftw a re ... for the
65C02: MTU-BASIC (std),
MTU-C ($200), M TU-FORTH
($79), 6502/65C02/6511 m acro
assem bler ($150),... for the
68000: MTU-BASIC 1.5 ($50),
Motorola com patable, m acro
cross-assem bler ($200),
FORTH68K-83 (with source
$250), FORTH68K-83 META
CO M PILER ($250),... 68000
MAGIC/L ($495), Digital
R esearch CP/M68K with C j
language ($ca ll). F or word
processing, W ORDPIC ($420)
m ixes graphics with text. And
you can run any CP/M 2.2
program with the PROGRAM-
M OVER Board (MTU-CP/M,
Z-80A, 64KB RAM-$650).

F or laboratory use, the
M ULTI-0 System ($1500)
offers IE E E -488 bus, clock
calendar, 2 parallel & 2 serial
ports, 12 bit D/A & A/D (8
channels) with up to 16,000
samples/second, 5,000/second
sustained to disk from MTU-
BASIC! It is fully en closed ...
including connectors, power
supply and all driver software
for interfacing all devices to
CODOS and all languages. And
for signal analysis work, our
DigiSound-16 offers 16-bit
linear, 100,000 samples/second,
variable internal or external
sample clock, 64KB DMA
RAM buffer, and parallel port

, in terface to work with any
com puter ($2995).

Interested? Call or write
MTU today for details. We ju st
made a good deal even
b e tte r . . .with a free 65C02.

M icro Technology Unlimited
2806 Hillsborough St.

Raleigh, North Carolina 27607
(919) 833-1458

Publisher/Editor-ln-Chief
Robert M. Tripp

Associate Publisher
Cindy Kocher

Production Manager
Jennifer Collins

Technical Editor
Mark S. Morano

Technical Editor
Mike Rowe

Advertising Manager
W illiam G. York

Circulation Manager
Linda Hensdill

Office Manager
Pauline Giard

Shipping Director
Marie Ann Wessinger

Comptroller
Donna M. Tripp

Accounting
Louise Ryan

Contributing Editors
Cornells Bongers

Phil Daley
David Malmberg

John Steiner
Jim Strasma

Paul Swanson
Richard C. Vile, Jr.

Loren Wright

Dealer Sales Representative
Alison Churchill

M IC R O is published m on th ly by:
M IC RO , Chelm sford, M A 01824 .
Second C lass postage paid at:

C helm sford, M A 0 1 8 2 4 and additional
m ailin g offices.
U SPS Pu blication N um ber: 4 8 3470 .
ISSN : 02 7 1 -9 0 0 2 .
Send subscrip tions, change of address,
U SPS Form 35 7 9 , requests for back issues
and all o the fu lfillm en t qu estions to:

M IC RO
P .O .B o x 6502
C helm sford, M A 01 8 2 4

or call 617/ 256-3649 .
Subscrip tion Rates: (per year):
U.S. S24.00 or $42.00 for two years
Foreign surface mail: $27.00
Air mail: Europe $42.00
Mexico, Central America, M iddle East,
North Africa, Central Africa $48.00
South Am erica, South Africa, Far East,
Australia, New Zealand $72.00

Copyright © 1984 by M ICRO.
All Rights Reserved.

{^Introduction to
IS FORTH

Kenneth Butterfield

The basic Why's and
Wherefore’s about the
FORTH language.

18Multi-Tasking in A Technique and Program
FORTH for Running Multiple Tasks

Under FORTH.
Kenneth Butterfield

24Structure Trees in a f o r th u tility that Prints
FORTH the Structure of a FORTH

Word.
Michael Dougherty

27 Textfile Write Edit Now reading, writing, and
Read Program editing textfiles is easy.

(T.W.E.R.P)
N. D. Greene

Graphic Print for C-64,
Part 3
Michaelxf. KeryajT~"

Add Full Color to Your
Graphic Printouts -Without
a Color Printer.

36Approximating the
Square Root of the
Sum of the Squares
Chris Williams

A Very Fast Method of
Calculating this Useful
Function.

44 Interface Clinic: A
Major Hardware
Interface

Design a major hardware
interface - a receiver
board for the 32K CoCo.

Ralph Tenny

4 MICRO No. 74 • August 1984

WQ75
68000 Exception

T / Processing -----------------

Mike Rosing

How 68000 Uses Exception
Processing to Handle
Software and Hardware.

1 **0 Transferring dBase II
Files For Use With
Wordstar/Mailmerge

^ Robert R. Carroll

Alter your dBase II files
and use them to produce
personalized letter forms.

Stepper

Chester H. Page

Step-Trace fa c ility that
a llow s you to bypass
m on ito r routines.

L {Time-Series
Q I Forecasting

Brian Flynn

A Program to Predict the
Future - That Runs on the
Apple, Atari, C64 or CoCo.

'■ ' rV ' j : ' H * " r ’ : 1

13 Wizard A game u tiliz ing the
C64’s ca pab ilitie s to
the m axim um —
tha t even le ts the
player create his
own m ateria l.

14 Stockerl For the serious
s tock market
investor, a program
for p red icting
perform ance tha t
can in te rac t w ith a
tim e-shared data
base.

13 Person-to-Person A feature packed
com m un ica tion
package fo r the
Apple, tha t inc ludes
a m a iling lis t
capab ility .

14 MMP-1000C A fu ll-fea tu re
Modem com m un ica tions

package fo r any
A tari, inc lud ing all
required hardware
and software.

13 Mail Now! A user-friendly
m ailing lis t program
fo r the C64.

2 Highlights 68 Books
7 Guest Editorial 69 Catalog
8 Editorial 71 Lyte Bytes

10 Feedback 72 Advertiser Index
11 Spotlight 72 Coming in October

No. 74 ■ August 1984 MICRO 5

From the editors of
A.N.A.L.O.G. Computing

$14.95

THE

F N F L O E]

COMPENDIUM
T h e best A T A R I k H om e C om p u ter Programs from the first ten issues of A .N .A .L .O .G . Com p u ting Magazine.

The ANALOG Compendium is available at selected book and computer stores, or you can order it direct. Send
a check or money order tor $14.95 * $2 shipping and handling to: ANALOG Compendium, P.O. Box 615, Holmes,
PA 19043

Or you can order by phone with MasterCard or VISA. Call toll free: 1-800-345-8112 (in PA. call
1-800-662-2444). For orders outside the U.S., add an additional $5 air mail, $2 surface.

by Mike Dougherty
Littleton, Colorado

Languages like FORTH represent an important turning
point for computer users. Until now, computer usage was
managed as a "closed shop.” Users desiring computer aid
were faced with either working with a software expert who
might not understand their problems, or becoming their
own software expert at the expense of effort applied to the
original problem. In either case, the actual solution to the
user problem was hindered.

In the last decade, the closed shop cycle was being
discarded by several new software environments. Working
in a scientific field which changed far faster than
conventional software support, Charles Moore developed
the language and operating system FORTH. In a sense, this
language placed software development in the hands of the
user. Users were able to quickly develop and modify
software without the software middle man. Parallel to
FORTH, the software engineer was also finding similar
help in the environment of UNIX and C. The UNIX/C
combination allowed the nebulous field of software
support to be directly used by the software engineer.
UNIX/C allowed each software engineer to build the tools
needed to analyze, design, write, test and document
software effectively. In education, Seymor Papert was
developing an environment called LOGO to teach
concepts in mathematics and programming. Papert's
methods were based upon the students writing their own
software rather than being passive subjects for CAI drill
and practice.

From the viewpoint of the user, these languages
re p re se n t th e tru e seco n d g e n e ra tio n of
software — languages which allow the user to directly
apply a computer to user problems. These second
generation languages may be characterized by the
"toolbox” approach to problem solving. Each of the new
computer environments allows the user to construct
individual tools (functions, modules, etc.) which may be
combined to solve problems. Instead of relying on an
intermediate software engineer to design and build a single
program, the second generation languages allow the user
to build upon past software to solve new problems.

The toolbox approach becomes a software metaphor for
the normal human process of learning. Learning typically
consists of building upon previous knowledge. For
example, speech must be learned in steps, each step
building upon the last. A small child will first learn simple
nouns and verbs. These words will be combined into short
sentences to express desires. Adjectives, adverbs and
prepositional phrases are later added to express more
complex desires or ideas. Thus, learning to speak is a
process of building new speech tools upon those
previously learned. This process of synthesis is a natural
and well practiced process for most people. The toolbox
approach utilizes this concept for software development.
(It should be pointed out that this "bottom up”
methodology is not perfect. Just as many children who can
talk must still be taught "proper" English in school, the
building blocks must be rearranged or modified when the
goal at the top is missed.]

Notice that the toolbox approach complements the
normally advocated "top down” methodology. This is not
bad. Rather, it is a reflection of two different problem
environments. Top down programming was developed to
aid software engineers dealing with complex programming
tasks. Complex software is not limited to large
government projects — even the Apple Lisa's integrated
software required a 200 man-year effort! These systems
require a different methodology than used in a laboratory
or learning environment.

Given a set of requirements, a complex project may be
successfully decomposed, layer by layer, into small, easily
programmed and tested units. This decomposition will
detail the interfaces between software functions and allow
different portions of the software to be developed by
different programmers or teams of programmers.

Although validated by several pilot projects and used in
many actual projects, this top down methodology (called
structured analysis and structured programming by
Yourdon) requires two strong foundations. First, the
software requirements must behave as a "damped
o sc illa to r ." Although many requirem ents change
throughout a project, these changes must converge to zero.
That is, for a final product to be generated, the final
requirements must be set prior to delivery. (In the real
world, this is not always the case!) Top down methods are
not very effective when requirements are vague.

Secondly, the right personnel must be found to perform
the software decomposition. Proper decomposition
requires a well structured, highly analytical thought
process. Unfortunately, most of us do not adequately
possess the skill and talent required for this job. In my
limited experience with complex projects, the front end
decomposition is, simply stated, very difficult. Not only is
the decomposition difficult to do, there are problems in
determining whether the decomposition is correct or even
complete. Finally, the ultimate project success, years
down the schedule, will depend upon proper and valid
decomposition. Good software analysts can easily be
worth their weight in gold.

Who are the readers of MICRO? I suspect that most of
the readers fall into the toolbox category. Like myself,
they are interested in using their personal computers for
solving the wide range of problems encountered in
everyday living, not programming complex U.S. Defense
Projects. Since everyday problems cannot always be
an ticip a ted , the softw are req u irem en ts change
continuously. In addition, it is difficult and cost
prohibitive to find a software 1 ‘middle m an" with as much
knowledge as the user. Only the user fully knows the
problems to be solved. The toolbox approach simply
makes good sense for most MICRO readers.

Where does this leave MICRO? I think that MICRO
should expand to cover these new software environments.
Versions of FORTH are available on most micros; similar
versions of LOGO are supported on both Atari and Apple
(LOGO Computer Systems, Inc.I; UNIX is rapidly
becoming the de facto operating system for the 68000

No. 75 ■ September 1984 MICRO 7

e d tfa n id t
microprocessor family. Details of specific implementa­
tions as well as the general philosophy behind each
software environment need to be covered. Each language
has its own niche with unique advantages and
disadvantages. The languages discussed here are not
free — they do require investment in software, hardware
and effort. By covering these second generation user
languages, MICRO will allow the readers to determine
what they should invest in their current or future personal
computers. These languages are receiving attention from
many sources and I feel that MICRO must seriously
consider their coverage.

Mike Dougherty has worked in the software field since
1977 and is currently a Software Engineer with Martin
M arietta Denver Aerospace in Colorado. He has
specialized in developing real time data acquisition and
control systems. While most of his software has been
written in assembly language, in the last few yers he has
used FORTH for work and personal projects. He has
submitted several FORTH programs/articles, the first of
which, Structure Trees appears in this issue.

Discover Forth
Join the FORTH Interest Group

T h e FO R TH In te re s t C ro u p (F IG) is a n o n -p r o f it m e m b e r-s u p ­
p o r te d o rg a n iz a t io n , d e v o te d to th e F orth c o m p u te r language .
Jo in o u r 4 7 0 0 + m e m b e rs a n d d is c o v e r F orth . W e p ro v id e o u r
m e m b e rs w ith th e in fo rm a tio n a n d se rv ice s th e y n e e d , i n c lu d in g :

O v e r fifty local FIG chapters (g e n e ra l a n d sp e c ia l
in te re s t) m e e t th ro u g h o u t th e w o r ld o n a re g u la r
basis.

Forth D im ensions m a g a z in e is p u b lis h e d s ix t im e s a
ye a r an d a d d re sse s th e la te s t F o rth new s. A o n e
ye a r s u b s c r ip tio n to FD is fre e w ith FIG m e m b e rs h ip .

The F IG -Tree is th e F lG -s p o n s o re d , o n - lin e
c o m p u te r d a ta base th a t o ffe rs m e m b e rs a w e a lth
o f F orth in fo rm a tio n . D ia l (4 1 5) 5 3 8 -3 5 8 0 u s in g a
m o d e m a n d ty p e tw o c a rria g e re tu rn s .

Forth publications: a w id e v a r ie ty o f h ig h q u a lity and
re s p e c te d F o r th -re la te d p u b lic a t io n s (lis tin g s ,
c o n fe re n c e p ro c e e d in g s , tu to r ia ls , e tc .) are ava ila b le .

The FIG H O T LINE (41 5) 9 6 2 -8 6 5 3, is fu l ly s ta ffe d to
h e lp you.

The Job Registry h e lp s m a tc h F o rth p ro g ra m m e rs
w ith p o te n t ia l e m p lo y e rs .

All this and m ore fo r o n ly $1 5 .0 0 /y r . ($ 2 7 .0 0 fo re ig n)
Just ca ll th e FIG H O T L IN E o r w r i te a n d
b e c o m e a FIG m e m b e r (V IS A o r M C a c c e p te d .)

u o n i miss o u r u p c o m i n g \ (4 1 5) 9 6 2 -8 6 5 3
6 th A n n u a l For th C o n v e n t io n \ i o r t h \ pQ g o x i i o s
N o v e m b e r 7 6-7 7, 7 984 a t t h e \ I „ , eres. \ San C a rlo s
H y a t t Pa lo A l t o in Palo A l to , CA. \ Q roup \ C A 9 4 0 7 0
Ca ll o r w r i te f o r de ta i ls . \ ____)

M ICRO Goes FORTH

I agree with the position set forth by Mike Dougherty in
the preceeding editorial. Starting with this issue, MICRO
intends to provide regular support for programming in
FORTH. Our recent Reader Survey indicates that
approximately one-fifth of you already program in
FORTH. This means that many of you are capable of
providing FORTH oriented material for MICRO. The
primary thrust should be FORTH programs and utilities
that can be added to other reader's 'toolboxes'. Since
FORTH is fairly standardized and is available for all
microcomputers, the value of each well-written FORTH
program extends far beyond the bounds of the
microcomputer that it was written on. This should be a
refreshing change from machine specific BASIC and
assembly programs. If you are a FORTH devotee, here is an
opportunity to share your accom plishm ents and
enthusiasm with other serious computerists.

Of course, if one-fifth of the readership program in
FORTH, then four-fifths do not! For these readers, MICRO
would like to provide introductory tutorials, ‘how-to-get-
started' projects, buyers guides to FORTH materials for
specific microcomputers, complete applications and
utilities, and overall, an incentive to make the effort to
learn a new language. Make no mistake — it does take
effort. You will have to purchase a version of FORTH for
your system, install it, use an editor that may be totally
different from that which you are familiar with, learn a
whole new way of approaching and solving problems and
memorize a strange, new vocabulary. But, MICRO will be
there to help.

The editors at MICRO are not FORTH experts. We are
just learning to use FORTH. On the one hand, this means
that we will be very sympathetic and understanding about
the difficulties other programmers encounter in getting
into FORTH. On the other, it means that we will be very
dependent on those of you who already are experts to
provide the articles and programs that will make FORTH a
successful part of MICRO. If you have never tried FORTH,
try it. If you are a FORTH enthusiast, support it.

Atari

It was not.suprising to find from the Reader Survey that
the two most popular microcomputers were the Apple
(39%) and the Commodore 64 (39%), with Atari (13%) a
distant third. Still, I feel that the Atari family of
microcomputers has many features that should make it
interesting to the serious computerist. Unfortunately it
has: a ‘game orientation' stigma attached to it; a non-
M icrosoft BASIC w ith a num ber of ‘odd-ball'
constructions — especially in dealing with strings; some
annoying aspects such as the ‘beeping', the ‘graphic mode
key' where the right-hand ‘shift key' should be, and so
forth. MICRO'S coverage of the Atari has been weak
relative to that of the Apple and Commodore. This is not
due to our lack of interest! It is due to a lack of good article
submissions on the Atari. Although only about one-third
as many readers own Ataris as own either Apples or C64s, I
would estimate that we get ten (10) or more submissions
for each of these computers to one (1) received for the
Atari. We try to convert some articles submitted for other
micros to the Atari, (see Time - Series Forecasting in this

[Editor’s Note: This ‘Guest Editorial' is essentially a very
thoughtful letter MICRO received from the author in April. Since
it expressed many o f our thoughts very eloquently, we obtained
permission to use it as an editorial.j

8 MICRO No. 75 ■ September 1984

issue], but this is a lot of extra work. While it might be
tempting to just drop the Atari, I still have hope for this
micro. Especially now that Jack Tramiel, the man who
took Commodore to the top, has taken over Atari. While
Atari may currently be down, do not count it out. If those
of you who use Ataris start submitting 'meaty' articles,
then you will see a lot more in MICRO on the Atari. Let's
hear from you.

A dvertisers

The money you pay for your copy of MICRO, whether
through a subscription or at the counter, does not begin to
pay for the cost of producing it. If MICRO was dependent
solely on its distribution revenue, then you would be
receiving an 8 to 12 page newsletter. The additional
revenue required to run MICRO comes primarily from
advertising. Advertisers pay to run ads for one reason: they
want to make sales. How does an advertiser know if his ad
is working in MICRO? While a few have a special
'department number' or other encoded information in
their address, most do not. They will only know that you
saw their ad in MICRO and were positively affected by it

If You Tell Them!
When you contact an advertiser to buy a product or for
more information, please tell them that you saw it in
MICRO. You can not over-estimate the effect this will
produce. The size of MICRO is determined primarily by
the amount of advertising. If you want to see MICRO
grow, then

Support Your Advertiser.

Editor-in-Chief

On The Cover
r amil v

 1 _____F O U R - G E N C R A T I O N 5

 2__________ F IRST -FAMILY
J ___________(, Kt AT-GRANDPAREN f 5
4______________ < . " J A»AH AND KMC
 3_________ GHAMDPARCNT S
 4_____________ GRAMMY AND GRANDPA
 2_______ N LI CL. CAR — FAMILY
 3_________ PARE NTS
 4_____________ < . ") MOM AND DAD
 3_________ CHILDREN
 4_____________ C.**> JACK AND JILL

For computerists who want to communicate with 'third
generation' computers, our tree (a 'structure tree1 which
was generated by Dougherty’s 'Structure Tree U tility'),
might bring to mind Dr. Moore, who named his solution
FORTH (fourth generation language). As Nature creates
trees of brilliant variety, so can the user of FORTH.

Cover Photo by Cindy K ochei

with a difference!
SuperTerm — the only software that communicates w ith
them all! Information networks such as CompuServe;
business and university mainframes; free hobby bulletin
boards.

Professionals and students: SuperTerm's VTI02 emulation
gets you on-line in style. Advanced video features, graphics,

a full-screen editing, 80/132 column through sidescrolling,
j extended keyboard — perfect for EDT, DECMail, etc. Even
| download your workfiles and edit off-line! Full printer and
1 editor support; other emulations available,
i
| Researchers and writers: SuperTerm's built-in text editor
| helps you create, edit, print, save, send and receive text
| files — articles, stories, reports, inventories, bibliographies — in
| short, it s your information w ork station. Access
| CompuServe, Dow Jones Information Network,
| Dialog/Knowledge Index, Western Union's Easylink, The
| Source, and many more. Optional Sprinter accessory saves
| printing time and S (see below).

I Computer hobbyists: Join in the fun of accessing hundreds
| of free bulletin board systems (BBS) for Commodore, Apple,
I TRS-80, etc. Text mode w ith all BBS systems; up/downloading
I w ith Commodore BBS systems IPunter protocol). Special
*•; protocol for up/downloading w ith other SuperTerm owners.
| Popular "redial-if-busy” feature for use w ith automodems.

1 Get the information you need, for business or for fun,
* w ith the software that communicates with them all!

4 Requires. Commodore 64. disk drive, and suitable manual- or auto-modem. Printer
optional. Software on disk w /fre e backup copy Extensive manual in deluxe binder.

SuperTerm's
SPRINTER Accessory.......... $69”

With the Sprinter accessory, SuperTerm can perform
concurrent printing — as text appears on your screen, it s
simultaneously printed on your printer. Includes all necessary
hardware for connecting your parallel printer and computer
via the cartridge port. Simply plug-in and go. Free utility
software for printing and listing as a stand-alone interface.

Requires, parallel printer such as Epson. Gemini. Microlme. C.ltoh.
|Min. speed 35 cps.)

Commodore 64 is a trademark o f Commodore Electronics, Ltd,

(816) 333-7200
MIDWEST

Send for a free brochure.

MAIL ORDER: Add $150 shipping and
handling ($350 for C O .D \ VISA/Mastercard
accepted (card# and exp. date). MO residents

fefl i r j i n *** sates tax. Foreign orders payable
1 ■ ■v * \ V in c . U.S.$. 05. Bank ONLY; add J5 shpAndlg.

311 WEST 72nd ST. • KANSAS CITY • MO • 64114

No. 75 - September 1984 MICRO 9

£ e e c (J U c 6 ,

To The Editor

I believe that the most basic need in the micro field is the
tranportability of software from one brand of computer to
another.

I, unfortunately, purchased a good computer that is no
longer very popular. I have converted it to CP/M to relieve
the software problem, but find that even that uses a
nonstandard disk format which is difficult to get
translated from the usual IBM format. Even with CP/M
there are about 20 different disk formats.

I believe in innovation but I find it difficult to
understand why a program written in a high level language
cannot be portable between almost all micro-computers in
some reasonably convenient way.

I'm in the process of determining what my next com­
puter will be. But I do not intend to buy the latest model
every year. The big question is not what is "state of the
art" or what is fastest, it is what computer is the software
going to be available for in five year or ten years. Now,
most new software is being written for the IBM PC. Even
CP/M-80 is being ignored by many vendors. Until
recently, I thought that maybe I.B.M . would be good for
many years but now I'm almost convinced that technical
limitations will prevent if from being effectively expanded
to larger systems such as UNIX and ADA. However, I do
not think that a Motorola 68000 based system will domin­
ate without the support of at least one large company in a
moderate price range. I know that all software writers

cannot provide all software for all formats and all
languages when almost all computers are different. So why
cannot all computers be provided with a second standard
ASCII disk format which is common to all computers for
the purpose of transporting software and data. Then the
addition of software translaters such as Apple Basic to
Commodore Basic or even Basic to Pascal could reduce a
nasty problem to one that is managable by most users. I
doubt that every one is going to agree on any standard by
which this can be done, so maybe a solution would be for a
technically oriented magazine such as MICRO to publish
the software and hardware specs needed to read from the
various disk formats.

C. M. Nelson
Indianapolis, IN 46256

The following limerick was submitted by Margie Joseph of
Los Angeles, CA.

Though sometimes her memory would slip
And sometimes her mind took a flip,
But now don’t dispute'r
She's got a computer
Her memory's a silicon chip.

JMCRO

lllllllllllllllllllllillllllllllllllllllllllllll|lll|l|l|l|l|l|||||l|l|||l|l|||||||!ll|!lll!|lllllljllllllllllllllltlll

APPLE

• Gives names and loca tions of various Integer
BASIC, Monitor, Applesoft, and DOS routines and
te lls what they ’re used for

• L ists Peeks, Pokes and Calls in over 2000
memory locations

• Explains how to use the in fo rm ation fo r easier,
better, faster softw are w riting

The revised ed ition w ith lie Appendix is now
available at a new low price of only $19.95.(plus $2
sh/h).
For the 35,000 people who already own previous
ed itions, the lie Appendix is ava ilab le separate ly
for jus t $5.00.

WE’VE w
ADDED APPLE lie

|GUIDE & ATLAS
tSO NOW THERE’Sj
vNOTHING MOREy

TO SAY!

10

MICRO INK =

P.O.Box 6502 |

Chelmsford, MA 01824 Z

phone 617/256-3649 (use VISA or MasterCard) s

l!lllllll!lllllllllllll!llll|llll!lllllllllllllllll!ll|]|llllllllllllll!llllllllllllllllll|llllllllllllllllllllllllllllllll!lll

MICRO No. 75 - September 1984

To order, send check or Money Order to:

McMill 68000
Coprocessor System

Distributor

Stellation Two
P.O. Box 2342
Santa Barbara, CA 93120
(805] 966-1140

Introduction
The M cM ill 68000 Coprocessor System is designed for the
Apple II and He. It is a peripheral board that enables
the Apple to run 68000 programs. The CPU is a 68008 chip
that utilizes direct memory access logic allowing the 6502
and 68008 to alternate memory cycles. All memory and
I/O slots can be directly accessed via the 68008. Using
alternating cycles while the 68008 is running, the 6502
continues to execute at one-half speed or faster. Special
address translation logic resolves conflicts among 68000
exception vectors, 6502 zero page and Apple II I/O space
locations. The fact that the McM ill 68008 is truly a
coprocessor that runs simultaneous tasks with the 6502 is
a particularly powerful advantage. (During disk access,
game paddle reads and any other timing-loop dependent
functions the 68008 must, of course, be halted.)

Installation
The M cM ill 68008 Coprocessor System board is painless

'and easy to install. All that is necessary is inserting the
board in one of the peripheral card slots. There aren’t any
additional connections or worries to deal with.

What is Provided
The package includes the M cM ill coprocessor board,
Hardware Documentation Guide, a Motorola Inc. MC
68000 Microprocessor Programming Card, a floppy disc
entitled Fig Forth, version 1.0 Mountain View press,
hardware warranty [McMill will repair or replace free
of charge any board that is defective within one year of
the original purchase date, damage caused by accident,
misuse, or tampering not included).

You can also order the S-C 68000 Cross Assembler
with the M cM ill Coprocessor System. This is an excellent
assembler as those who already have their 6502 version
will attest to. All S-C assemblers use the same set of
directives and commands, making adaption to different
chips very easy. The 68000 version has some differences
from the standard S-C Macro Assembler, such as expres­
sions being expanded to 32 bits, and other alterations
necessary to accommodate the code and syntax differences
in the 68000. All variances are clearly documented.
Included in their latest version are 10 new commands and
7 new directives, improving what is already a fine product.

No. 75 - September 1984

Under a special arrangement with Addison-Wesley
Publishing Company Stellation has been allowed to
provide a monitor from Tim King and Brian Knight's book
'Programming the M 68000.' The book takes the reader
through the world of the 68000 and how to program it. A
floppy disk with their monitor and a debugger is provided.
The monitor/debugger is compatible with the S-C Macro
assemblers source files, allowing easy editting and
assembly.

What is Not Provided
The board itself hasn't any ROM or RAM. None of the
languages most 68000 users would use are provided,
namely C, Fortran, UNIX, and LISP. Although a version of
C is due to be released, this is still a serious shortcoming.

Documentation
This is where the McM ill package is the weakest. The
Hardware Documentation Guide could cover more and
include a schematic diagram that is legible. Expanded
hardware documentation is scheduled for release, which
will hopefully correct the shortcomings of the present
version. The Monitor/Debugger relies on the information
in King and Knight's 'Programming the 68000' for
documentation. The information needed is basically there
but the organization is not. It is organized as a chapter
in a book [which is what it is), not as documentation for
software. Although the Mountain View Press Fig FORTH
is included with the McMill package, you have to send
away to Mountain View Press to get the complete
documentation (for a nominal charge). This strikes me as a
good way to create unhappy and frustrated users. It would
make more sense to charge more for the package and
deliver it complete, rather than inconveniencing and
possibly annoying the user.

Price
The M cM ill with FORTH is $229.00; with the S-C
Assembler it is $299.00.

Conclusion
This package has its ups and downs. It does gives the
Apple user an inexpensive way of upgrading to a 68000
machine, while not having to give up the familiarity
of his present machine. On the other hand the poor
documentation, lack of on board RAM and ROM, Fortran,
LISP and UNIX are enough to discourage many users. For
those who are soley interested in getting into 68000
Assembler, using the S-C Macro Assembler with the
McM ill board is an inexpensive means of doing so. In the
end it depends on what your needs and expectations are as
to whether this is a product for you. «•/*«/%-^ IQ iQ

77~MICRO

Super Action Software!

DENVER, COLORADO

Perplexian C hallenger $23.95
The incredibly .-•yspor'.'iivy three-a

p a c e f ig h te r is -n vo',:’' h a n d s Spi t

c o n t in u o u s d is p la y C: ',-CL.r S f'ip S

c: a tn r e e - d im e 'is ;c r d l . a n im a te d vie

r ais \o y c± v c k c c n '^ o i

; l i ee n g ra p h ic s pr'O'-'ide

iS t ru m e n ta t io n as w e l

r- o t s p a c e

You. as a 3 'lo t. m u s t u t i l iz e :rg h tm n g fa s t re f le x e s to d e s t ro y

in va d in g s h ip s , a nd avo id th e ir " e tu r n f r e S ,rn U ta n e c u S ly , you

m u s t m a n e u v e r y o u r sh ip to c a p tu re s p a c e d e b r is t h a t

r e m a n s fro m th e e x p lo s io n s

O u ts ta n d in g g ra p m c s fe a tu re s in c lu d e s m o o th 3 -D

ro ta t io n s , s p l i t s c re e n s , a nd th e n o s : in c re d ib le h /gh-

" e s o l j t ic n h y p e rs p a c e s e q u e n c e e v e r p ro d u c e d

P ro g rs m m e c e n t ir e ly m m a c h in e la n g u a g e , th is a c t io r -

s t r a te g y g a m e :s g u a ra n te e d to b lo iv you aw a y

A ll th e p ro fe s s io n a l fe a tu re s yo u e x p e c t a re in c lu d e d ,

a u to m a t ic s e if -c e m c . h igh s c o re r e te n t io n , p a u se , a n c

p ro v is io n s fo r 1 to 4 p la y e rs . A d d to th is , fe a tu re s you d c n 't

e x p e c t like e a s y - lo a d in g a nd m u s ic d u r in g th e load. P e rp le x ia n

C h a lle n g e r is a g a m e th a t b r in g s th e a rc a d e e x p e r ie n c e to y o u r
h o m e

C Y B E R W O R L D £3995
T h is f iv e - s c r e e n a rc a a e a d v e n tu re p a c k s th e c o m p u te r w ith

in te n s e g ra p h ic s a nd s o u n d ! Y o u a re a s p e c ia l C y b e r le a g u e

a g e n t in a u n iv e rs e fu ll o f h o s t i le a lie n s a n d v ic io u s ro b o ts .

J o y s t ic k a n d k e y b o a rd t r a n s p o r t yo u th ro u g h 3 - D ro o m s ,

s p a c e o a r n e r s , f le e ts o f in v a d e rs , a n d w a rs h ip - r id d e n

q u a d r a n ts o f s p a c e O v e r 1 0 0 s p r i te s , 8 n e w c h a r a c te r s e ts ,

a n d d o z e n s o f m n d -b o g g lm g s o u n d e f f e c t s m a k e up th is m u l t i ­

la y e re d a d v e n tu re . A n im a t io n , a c t io n , a nd s t r a te g y all

c o m b in e d in to a g a m e s o e x te n s iv e t h a t tw o d is k s id e s a re

la m m e d w ith g a m e p ro g ra m s a nd d a ta ! R e a c h th e u l t im a te

ra n k o f a d m ira l a n d yo u m a y c a rv e a n ic h e t r th e p e rm a n e n t

h ig h - s c o r e Ust. A fu l l- s iz e b o o k q u a li ty m a n u a l w i th fu l l- c o lo r

c o v e r s is in c lu d e d to g u id e you th ro u g h y o u r m o s t e x c it in g

g a m e e x p e r ie n c e

C D f Z C l R d $39.95
Ju m p from ropes ro ladders, dodge p lum m ering boulders and

duck under deadly arrows in your quest for sparkling d iam onds,

gleam ing bars o f gold, and glistening pearls. W ith joystick in hand

you m ust explore forty dazzling screens, each a new and exciting

adventure. Take the key co unlock rhe doorw ay to your nexr spine-

tingling level, Each key restores your magical powers, a llow ing you

ro cas rover ren d ifferent spells. W ith rhese magic spells you have the

power to overcome vicious creatures, terrifying traps, and perilous

plunges.

Your W i:a rd is realistically animated m every possible direction.

Dozens o f movements are possible — ju m p over burn ing fires,

sh im m y up or dow n ropes and ladders, even slip dow n treacherous

slid ing staircases! Magic porrals move your W izard through m idair

and prorect you from a myriad o f fully-animated fiendish monsters.

Catch an elevator to the top o f the screen and dart through slid ing

gates in your quest for magic and treasure.

W iza rd ’s fascinating variety o f screens are sure to please and

entertain, and o f course you can bu ild an un lim ited num ber o f your

ow n levels using the construction set provided w ith your game.

fiWt
z ft sf ki ;

^PROFESSOR *3435
A n i n - d e p t h s e t f - l u l u r i a l f o r t h e C o m m o d o r e 6 4 o n a t w o -

s i d e d d i s k . T h i s m e n u - d r i v e n t u t o r i a l c o v e r s e v e r y a s p e c t

o f y o u r C - 6 4 — B A S I C , k e y b o a r d , s o u n d , m u s i c , s i m p l e a n d

a d v a n c e d g r a p h i c s . Q u i z z e s l e s t y o u r c o m p r e h e n s i o n at

t h e e n d o f m a n y l e s s o n s ' O n - s c r e e n i l l u s t r a t i o n s , s o u n d

e f f e c t s a n d f u l l - c o l o r i n t e r a c t i v e g r a p h i c s m a k e l e a r n i n g

e a s y a n d m e r e s t i n * . T h e P R O F E S S O R i s y o u r O N L Y c h o i c e

f o r a n a l l - i n - o n e , t h o r o u g h t u t o r i a l a b o u t I h e C o m m o d o r e 6 4 f

flio tfy m o g ’ s ^ Im r $39.95
R e a l- lim e a d v e n tu re e x c ite m e n t a ! its b e s l SoWe c o u n iie s s

puzz les an d s lay o ve r a dozen rn o n s te rs by us ing the huge
v o c a b u la ry o f o ve r 20 0 w o rd s T w o c h a lle n g in g d if f ic u lty le ve ls
a w a it yo u w ith o ve r 80 a reas , e a ch fu lly d e s c r ib e d in O ld E ng lish
s c rip t

M e n a c in g m o n s te rs , k m vm g v illa ins . ta lle re d c o a e b o o k s a nd
tre a c h e ro u s te rra in a re ju s t a le w of the s itu a tio n s you m u s t
o v e rc o m e m yo u r q u e s t fo r the th irte e n p r ic e le s s tre a s u re s M o re
than s e v e n ty o b |e c ts a re in v a lu a b le to you in yo u r s e a rc h fo r g lo ry
and w e a lth 1

A fu ll-s ize . th o ro u g h ly illu s tra te d m a n u a l <s in d u c e d F e a tu rin g
c o lo r fro n t a nd b a ck , b o o k q u a lity , and a lo id -o u t m ap this
'e x tra fu rth e r e x te n d s th e p ro fe s s io n a lis m of 'h is g a m e T he

fo llo w in g a re q u o te s Irom u n s o lic ite d te s tim o n ia ls sen t to us by
a d v e n tu re rs .n G c th m o g s La ir

' I ha ve e x tre m e ly e n io y e d G u th m o g s La ir a nd p lan to buy m o re
a d v e n tu re g a m e s

S co tt T u lm a n
M e m p h is . TN

G o tn rn o g 5 L a ir is the Desf a d v e n tu re I ve eve.’ p iayed
D e n n is M a n o c h io . Jr

S a ra toga

Supershipper 64
A c o m p l e t e m u l t i - p r i n t e r s h i p p i n g s y s t e m w h i c h o p e r a t e s

1 >(i t h e i n e x p e n s i v e C o m m o d o r e 6 4 . O i l e r s a l l i h e f e a t u r e s

ol m o r e e x p e n s i v e , m o r e c u m b e r s o m e b u s i n e s s s o f I w a r e a t a

l o w . l o w p r i c e . F u l l - s c r e e n , f u l l - c u r s o r e d i t i n g o n a l l d a t . i

e n l r v . P n r i l s j m o i c e s . C O D. l a g s , m a i l i n g a r i d s h i p p i n g

l a b e l s . S o r t s y o u r c u s t o m e r l i s t a p h a b e t i c a l l y . b y c i t y s t a l e

o r b y s a l e s p e r s o n . K e e p s c o m p l e t e r e c o r d s o f a l l i r n o i c e s

a n d a c c o u n t s o n d i s k — u p I n 8 0 0 a c c o u n t s p t i d i s k ! A u t o ­

m a t i c b a c k u p s , p r o d u c t c h a r t s a n d m a n y o t h e r f e a t u r e s

a r e a l s o i n c l u d e d .

Supershipper Accounting
' /' he a c c o u n t i n g s u p p l e m e n t t o (h e S u p e r s h i p p e r 6 4 . P r i n t s

s t a t e m e n t s , b a n k d e p o s i t s , p a s t d u e a c c o u n t s a n d d a i l y or

m o n t h l y s . d e s r e p o r t s . B r e a k s d o w n s a l e s c o m m i s s i o n s a n d

p r i n t s a l l c u s t o m e r ' s p a s t I r a n s a c l i o n s . A l s o p r o v i d e s

i n v e n t o r y c o n t r o l f o r u p l o ZOO d i f l e r e n t p r o d u c t s . T h e o n l y

w a y t o f u l l y c o m p u t e r i z e y o u r b u s i n e s s !

Supershipper 64 $99.95
Supershipper Accounting $79.95

Progressive Peripherals & Software
2186 South Holly, Suite #2, Denver, Colorado 80222

Call fo r more inform ation or a dealer near you.

TELEX: 8 8 8 8 3 7 (3 0 3)7 5 9 -5 7 1 3 (3 0 3)7 5 7 -0 8 3 0 TWX: 91 09971 314

'le o U c a ^
Product Name: Person-to-Person
Equip. Req’d:

Price:
Manufacturer:

Apple II, I I + , He - DOS 3.3
Modem recommended-Hayes, Apple or
Novation
$39.95
Trutec Software, Inc.
1700 Solano Ave.
Berkeley, CA 94707

Product Name: Wizard
Equip. Req'd: Commodore 64
Price: 39.95
Manufacturer: Progressive Peripherals & Software

2186 South Holly, Suite #2
Denver, CO 80222

Description: If you must have a game, it should at least
utilize the built-in capabilities of yorn computer to the
maximum. Wizard does! The game is of the "Donkey
Kong” genre in which you move around the screen to
reach an ultimate destination, while getting points by
taking treasures and avoiding fatal hazards. Through the
use of sprites, clever sound effects, a superior collection of
options, a large number of screens and many unique
concepts, it goes far beyond similar games. For example,
there are 'spells' that can be used to ward off calamity.
Some of these, such as ‘invisibility’, can protect you from
harm, but at the same time may make it more difficult for
you to move around the screen since you can only see the
wizard against colored backgrounds. Also, the invisibility
'wears off' as you use it to avoid destruction. High scores
are automatically maintained on disk.

Pluses: The utilization of the Commodore 64's sprites,
sound, programmable characters and color provide an
excellent demonstration of the capabilities of the
computer and should inspire programmers to improve
their own displays. The game involves more than just the
complex coordination found in many other games. A good
deal of strategy is required to master the game. The game
is even fun to watch while another plays, so that sharing
the game in a multi-player mode is enjoyable. The choice
of screens, speeds, spells and so forth keep the game from
getting repetious, even after many hours of play. The most
significant feature is the ability to generate your own
screens! This goes beyond merely playing the game. This
gives the novice a chance to experience the joy of
'programming' a computer to make it do what he wants.
He can design screens as complete as those that come with
the package, with hazards, spells, colors and the like.

Description: A full-featured communications program
including a mailing list/telephone list file, auto-dialing,
including secondary carriers, terminal program with auto
log-on and printed output, including form letters and
mailing labels. The entire program is menu-driven with
consistancy of response throughout the program. The 80
page documentation is easy to read and completely
explains any possible questions. The manual includes
many examples of command files.

Pluses: This program has all the bells and whistles of
standard communications/ terminal programs, plus it
incorporates a complete mailing list program with
telephone numbers that can be searched and dialed,
including pass word numbers to carriers such as MCI and
SPRINT. A single keystroke can dial and log-on to such as
CompuServe and Source, upload electronic mail, check
your mailbox, download its contents, sign off and hangup.

Minuses: None noted.

Skill level required: No prior experience required.

Reviewer: Phil Daley

Product Name: Mail Now
Equip. Req’d: Commodore 64 with disk and printer
Price:
Manufacturer: Cardco, Inc.

313 Mathewson
Wichita, KS 67214

Author: S. & S. Faure and G. Coggin

Description: A user-friendly mailing list program for 600
names per disk with add, delete, modify and sorting
options. The printer options include one or more rows of
labels, repeat labels, and printer codes for double strike,
enhanced, etc. There is also a convert function to change
the file format into one readable by the Write Now! word
processor.

Minuses: It may become habit forming.

Documentation: Very extensive for a game. Provides
more than enough information to play the game and to
create new screens.

Skill Level: With the variety of speeds and screen
difficulty, the game is suitable for all ages. The new screen
creation is limited only by the users imagination, not any
knowledge or training limitations.

Reviewer: Robert M. Tripp

Pluses: If you are familiar with label systems, the manual
is almost superfluous - the program is that easy to follow.
The search command quickly and easily can find a string
in any major field. Modify quickly changes any data. The
program performs flawlessly.

Minuses: If you like slapstick comedy, read the manual.
Otherwise just use the program and forget the satire.

Skill level required: No prior knowledge required.

Reviewer: Phil Daley

No. 75 • September 1984 MICRO 13

Product Name: Stockerl
Equip. Req’d: Apple II, II + , He - CP/M only

with Z80 card, TRS80 Mod III, 4, II,
12, 16 card

Price: $300.00
Manufacturer: Engineering Management Consultant

P.O. Box 312
Fairfax, Virginia 22030

Description: This package is designed to help the user
forecast stockmarket turning points, enabling better
investment and profit performance.

Pluses: Using a unique Moving Window-Spectral method
Stockerl saves time in stockmarket forecasting. Inputting
of historical data is easy and user friendly (prompting
provided). Stockerl employs a univariate model (one vari­
able in, the same variable out). Future values are predicted
using historical data which is input in a user oriented data
editor. Data can be entered in a Create mode or Update
mode. Statistical comparison is provided in addition to
graphical representation and comparison. Charts/graphs
are in an easily readible form. One free hour on the
Electronic Forecast Information Service is also included in
the package.

Minuses: If the user is not very familiar with stocks and
forecasting he is apt to be lost with this program. This is
certainly not a program for the uninitiated. At one point
through an error entered into the program we ended up in

OS9
APPLICATION

SOFTWARE
ACCOUNTS

PAYABLE

$349
ACCOUNTS
RECEIVABLE

$349

GENERAL
LEDGER

with
CASH

JOURNAL

$449

PAYROLL

$549
SMALL

BUSINESS
INVENTORY

$349
COMPLETE DOCUMENTATION $19 .95

OS9 & BASIC 0 9 ARE TRADEMARK OF
MICROWARE, INC. & MOTOROLA CORP.

SPECIALTY
ELECTRONICS

(405) 2 3 3 -5 5 6 4
2 1 1 0 W. WILLOW - ENID, OK 73701

an infinite loop. A second try did not produce this prob­
lem. Unless you are a serious player of the market it would
be hard to justify the cost of this program.

Documentation: The manual provided is clearly laid out
and reasonably easy to read. Instructions and descriptions
are understandable if the user has an understanding of the
subject. It is assumed the user is familiar with his com­
puter's operating system. Technical data is provided, as
are sample case studies, and a bibliography. The manual
does suffer from a number of typos.

Skill level: Intermediate to advanced.

Reviewer: Mark S. Morano

Product Name: MPP-1000C Modem
Equip. Req'd: Any Atari Computer
Price: $149.95
Manufacturer: Microbits Peripheral Products

225 W. Third Street
Albany, OR 97321
503/967-9075

Description: There probably is not any easier way to get
into telecommunications with your Atari. The package
consists of the modem which plugs into a joystick port and
a standard telephone connector; a cartridge containing the
terminal software; and a short manual. The program is
totally menu driven, making it simple for anyone to use.
The following features are supported: display disk drive 1
directory; direct transfer of information between disk and
modem; buffer modem to memory and then copy to a
specified device and visa versa; select between full/half
duplex, ASCII/ATASCII translations, X-modem protocol
on/off, 38/40/80 column display, no/odd/even parity;
auto answer; enter/save/load up to ten phone numbers to
be used to dial number, and more. By combining the
various features, files may be up/down loaded from Atari
Bulletin Boards (BBS), other Ataris and other computers. A
CompuServe demonstration package is included, and,
thoughtfully, a list of bulletin board services listed by
state throughout the country so that you have someone to
talk to when you first get started.

Pluses: Extremely easy to connect, use, and understand.

Minuses: None noted.

Documentation: Basic information is covered well A
few more examples of combining the various options for
specific tasks would have been useful.

Skill level: Any and all.

Reviewer: Robert M. Tripp

AlCftO

14 MICRO No. 75 ■ September 1984

■ (p c tf u n e

'^ In tro d u c tio n ^ * *
to

FORTH
I I S i IH I 3 F1I in i im i = 1RP in r irnr= in r = ---------1

Basic why’s and wherefore’s about the FORTH language.
i--------- 3 RI— = —= in i = i n i-------= i n i^ ^ ^ = i n r = i n [^ ^ ^ = in r = -------in r = --------in r= i

by Kenneth Butterfield
Los Alamos, New Mexico

In the early spring of 1978, I first
le arn ed of FO R T H from an
a d v ertise m en t for P e tF o rth by
Programma International. At the time,
I was doing scientific calculations and
was looking for a language that would
be faster than the Pet BASIC. Another
goal I had for the PET was to use it to
control experiments in a physics
laboratory. I called Programma to find
out if FORTH was suitable for my
needs. The call was transferred to the
programmer who had written PetForth
which really gave me a feeling that I
was getting first class service! My first
question was Is FORTH a good
Language'! and the response was the
classic, I don ’t use languages, I just
piogiam them! The question Is FORTH
a g o o d la n g u a g e ! re m ain e d
unanswered. I hope to provide my
answer to this question, as well as to
the questions What is FORTH!, and

Who would be interested in FORTH!
First, FORTH is more than just a

language. It can be a stand-alone
operating system that provides basic
support for terminal and disk control.
Multi-tasking and multi-user FORTH
systems are available. FORTH also
provides a block structured high level
language that can be used in an
interpreted or compiled mode. Among
some of the block structures provided
are th e D O ... lo o p , B E G IN ...
WHILE...END, and BEGIN...UNTIL
loops and the IF .. .E L SE .. .ENDIF
control structure. On the other hand,
FORTH has been called a pseudo­
machine language because the key
words used for moving data from place
to place are very simple and similar in
use to the techniques used in assembly
language.

FORTH can have all of the above
features because it is an extensible

language. Most implementations of
FORTH have a small kernel written in
machine language and the remaining
80-90% of the language is written in
FORTH. Any new 'words' (FORTH's
name for a procedure or subroutine) are
defined using the previously compiled
words. Each new word becomes part of
the FORTH 'dictionary' (list of words
or commands) and are available for use
in future definitions. The programs
that you write become part of the
language.

One of the nicest features available
in FORTH is the on-line interpreter.
Commands may be given to FORTH
from the keyboard in a similar manner
to the ‘immediate mode' of most
BASIC interpreters. T h is allows
FORTH to be used as a calculator.
Another use for the interpreter is in
program development and. debugging.
The interpreter allows the programmer

No. 75 ■ September 1984 MICRO 15

to try out a sequence of commands, one
at a time, to verify their consequences.
After the sequence has been shown to
work properly, it can be given a name
and compiled into the language for
future use. A program [word) is
activated by typing its name in the
interpreter mode, or by entering the
name in the list of names that makes
up the definition of a new word.

FORTH was originally written by
one man, Charles Moore, to provide a
better media for program development
than the languages available at the
time. One of its first uses was in real
time computer graphics where, it is
said, FORTH provided a marked
increase in speed over FORTRAN! 1).
The first widespread use of FORTH was
in the computer control of large
telescopes, and FORTH continues to be
the language used at many of the
world's largest observatories. In fact,
my early interest in the language grew
when a fellow student informed me
that FORTH was the language he used
when doing his research at the Kitt
Peak Observatory. It seemed to me that
a language that could control a large
telescope should be useful in other
control applications.

More recent uses of FORTH
continue the computer control theme.
Two applications are the control of
robot cameras for special effects in the
motion picture industry[2), and remote
sensing of water depth and speed for aid
in navigation of large barges on inland
waterways(3). FORTH is still strong in
the area of computer graphics. Charles
Moore has a CAD-CAM system that
runs in 28K of memory(4). FORTH has
been shown to be very useful in
research laboratory settings where the
experiments vary from day to day. It is
important to have a language that is
flexible, allowing the measurement
(spectrom eters, A D C ’s, etc.) and
control devices (stepping motors or
relays) to be connected in new and
often changing configurations.

New uses for FORTH are being
developed all of the time, and some of
the most exciting are in the area of
artificial intelligence. LISP is the
language usually associated with AI
projects, but there is a marked
similarity in the underlying structures
of LISP and FORTH. Both languages
treat data and programs as lists, and
have the feature that a program can
create and manipulate a list that will
later be used as a program. Programs
written for the two languages are

similar except for the notation. LISP
uses a parenthetical notation while
FORTH uses a parenthesis free
notation originally derived for formal
logic by a Polish logician, Lukasiewicz.
The difference in usage can be
compared to the difference in using an
algebraic calculator such as produced
by Texas Instrum ents, versus a
'Reverse P o lish ’ calcu lator from
Hewlett Packard

In the FORTH compiler, new words
are added to the dictionary, and can be
used in the definition of future
programs. The structure of a word
consists of a header section containing
the name of the word and pointer and a
data section. The data can be either a
constant, a variable, a list of variables,
or a list of addresses if the word is an
executable word. It is LISP's ability to
treat a list as either data or program
th a t m ak es it u se fu l for AI
programming. It is not surprising, then,
that FORTH can also be used for AI
applications. What is surprising is that
F O R T H m ay have s ig n if ic a n t
advantages for some projects.

For instance, in a knowledge-based
system developed by General Electric
to diagnose and troubleshoot large
electric locomotives, a FORTH system
operating on a PDP-11 minicomputer
was found to be smaller and faster then
a LISP system operating on a VAX
computer(2). If you think that such a
system would be out of your reach, a
program recently became available for
CP/M based computers that supplies
an expert system language written in
FORTH. A recent article uses this
language to develop a w eather
prediction program(5).

Hopefully, I have convinced you
that FORTH is a powerful language
that is useful for many different
applications. Not only has FORTH
been used to control large telescopes
and explore artificial intelligence, it
has been used to program text editors,
data base systems, spreadsheets and, of
course, games. Application programs of
these types are often available from the
same vendor that sells a version of
FORTH for your machine.

If you are interested in FORTH
there are many good sources of
in fo rm a tio n . V ariou s com p u ter
magazines print articles on FORTH
either occasionally or on an annual
basis. Other sources of information
include newsletters and books.

MICRO has told me that it plans to
publish more FORTH articles now that

their emphasis has returned to reaching
the experienced users. Dr. Dobbs
Journal has had an annual FORTH issue
for several years. It comes out in
September and is usually very good.
S ev era l o th e r m ag azin es have
published an article on FORTH at one
time or another. You might check the
availability of back issues.

One of the best information sources
is the FORTH INTEREST GROUP,
FIG, (PO Box 1105 San Carlos,
CA.94070). FIG publishes a bi-monthly
newsletter and has local chapters in
many cities. Membership in FIG is $15
and includes a subscription to FORTH
Dimensions. FIG also has source
l is t in g s of FO R T H for m any
m ic ro p ro c e s s o rs and m any
m inicom puters. The FIG-FORTH
in s ta lla tio n m anu al is a very
interesting document and I highly
recommend its purchase because it
contains vocabulary listings with
descriptions of the use of each word. It
also contains a complete FORTH
implementation written in FORTH as
an example of how large programs can
be written!

There are several good books
available ranging from introductory
level to advanced application. Starting
FORTH by Brodie is a very good
introductory text with the caveat that
it uses FORTH Inc. syntax. Threaded
Interpretive Languages by Loeliger is a
very good text on the design and
im p le m e n ta tio n of th read ed
interpreters (FORTH is only one
example] and would be a good choice
for more experienced computerists.
Mountain View Press, Inc. (PO BOX
4656 Mountain View, CA. 94040) lists
over 30 books and manuals, a dozen of
these being general descriptions of
FORTH.

One last source that should not be
overlooked is the instruction manual
that comes with a FORTH system.
There are many vendors that supply
FORTH systems, and many of these
have very good documentation that
comes with their product.

This brings up my final topic. If you
decide to get a FORTH system, what
should you buy? As usual, a simple
question like this cannot be answered
simply. First you have to decide
whether to implement your own
version of FORTH using a source
listing (from FIG) or to purchase a
complete system. There are complete
systems for practically every computer
that has been on the market for more

16 MICRO No. 75 ■ September 1984

than a few months. In fact, one
computer (Jupiter Ace at $150) comes
with FORTH as its main language. If
you decide on a complete system you
then have to decide on which FORTH
standard to use.

Most people will want to purchase a
complete system from a vendor. This
has the advantage of having a working
program immediately, and someone to
complain to when it doesn't function
in the expected manner. The main
standards that exist are original FIG-
FORTH, FORTH79, and FORTH83.
These are all standards defined by FIG.
Fortunately, FORTH83 supercedes
FORTH79 and should become the most
common standard as vendors update
their product. Original FIG-FORTH is
very common and can be extended to
meet the later standards.

Another version of FORTH comes
from FORTH Inc. This company was
started by Charles Moore, so their
FORTH has to be considered as a
standard because it is the 'original’
FORTH. FORTH Inc. produces a very
professional package for many different
computers. They might be considered
the Rolls Royce of FORTH systems.

There are many vendors that

produce a FORTH that does not meet
any of the above standards for one
reason or another. Quite often these
sy stem s have a m arked speed
improvement over a standard system.
Be aware, however, that the speed
increase is usually obtained at the
sacrifice of portability to other
machines (including other processors)
which is one of the main benefits of the
standard systems. Another possible
sacrifice that is sometimes made is the
ability to produce ROMable code. Of
course this capability may not be
something you need. Then too, this
ability may not be an option on a
standard system.

My recommendations for personal
use would be to buy a FIG-FORTH
compatible system, and preferably one
that has enhancem ents to m eet
FORTH83 standards. This type of
system can run programs written for
many different computers. Your first
system should probably be a complete
system purchased from a vendor. If you
are really brave or foolhardy you might
consider the option of configuring your
own system starting with FIG source
code. I have done this for a 6809
computer and succeeded (mostly) in

getting it to work. This is a particularly
good route for someone who has built a
computer from scratch. Implementing
your own system is not easy, but it is
tre m e n d o u sly s a t is fy in g w hen
completed! In any case, FORTH is a
very interesting language that is well
worth learning.

References
1) Marlin Ouverson, Interview with

Charles Moore, FORTH Dimensions
vol. 6, 2, pg. 2, July/Aug. 1983.

2) Kim Harris, Forth Applications
Conference, FORTH Dimensions vol.
6, 2, pg. 31, July/Aug. 1983.

3) Peter J.Largeren, FORTH :
Cheaper than Hardware, FORTH
Dimensions vol. 6, 2, pg. 13, July/Aug.
1983.

4) Robert Berkey, FORMAL 1983: A
Review, Programming Techniques,
FORTH Dimensions vol. 5, 5, pg. 34,
Jan./Feb. 1984.

5) Jack Park, Expert Systems and
the Weather, Dr. Dobbs Journal vol. 9,
4, pg. 24, April 1984.

JMCftO

C64-FORTH/79
New and Improved

for the Commodore 64
C64-Forth/79T“ for the Commodore 64-$99.95

• N ew and im p ro v ed F O R T H - 7 9 im p lem e n ta tio n w ith
ex te n s io n s .

• E x te n s io n p ack ag e in clu d ing lines, c irc les , scaling,
w in d o w in g , m ix ed h igh re s -c h a ra c te r g rap h ics and sp rite
grap h ics.

• Fully co m p a tib le flo a tin g p oint p ack ag e includ ing
a rith m e tic , re la tio n a l, logical and tra n sc en d e n ta l fu n ctio n s .

• S tr in g e x te n s io n s in clu d ing L E F T $, R IG H T $, and M ID $.
• Full fe a tu re s c re e n ed ito r and m acro a ssem b ler.
• C o m p a tib le w ith V IC p erip h era ls in clud ing disks, data se t,

m od em , p r in te r and cartrid g e .
• E xp an d ed 1 6 7 page m an u al w ith ex am p les and application

screen s .
• "S A V E T U R N K E Y " n o rm ally a llow s ap p licatio n p ro g ram

d is tr ib u tio n w ith o u t licen sin g o r ro y a lties .

(C o m m o d o re 6 4 is a tra d em a rk o f C o m m o d o re)

TO ORDER
-D is k only .
-C h e c k , m o n e y o rd e r, b an k card, C O D 's add $ 1 .6 5
-A d d $ 4 .0 0 p o stag e and h an dlin g in U S A and C an ad a
-M a ss . o rd e rs add 5% sa les tax
-F o re ig n o rd e rs add 20 % sh ippin g and handling
-D e a le r in q u ir ies w elco m e

PERFORMANCE MICRO PRODUCTS
770 Dedham Street
Canton, M A 02021 VISA

(617) 828-1209
M oriwC<vd

ATTENTION COMMODORE 64 OWNERS:
Is THE CLONE MACHINE really dead?”

Yes, there comes a time when a product grows old and isn’t the
latest state of the art. Thank goodness we understand that here at
Micro-W. Our all new version (known as SUPER CLONE) will surely prove that we are still numberone in the back-up business.
You’ll still get the old reliable
Clone Machine but we've
added the following:1) A fast clone copy (approx.

14 minutes) that1 s simple to use
2) A Super Unguard utilility that quickly handles errors 20 thru 29 (and you don’t
even have to disassemble your drive like some of our competitors suggest)3) A new unique way to back-up formerly uncopyable
software.Don't worry if you are a registered owner of our earlier
version, we've got you on
file and this upgrade will only
cost you $10 plus shipping
and handling. Dealers, call
us for stock balancing on old
merchandise .
STILL ONLY $49 95*

Available from:
S h o u ld 'v e m a d e back ih S u p e r C lon e

1342B Route 23 Butler. N.J. 07405
CALL: (201) 838-9027 To Order
Dealer and Distributor Inquiries Invited.

* W e w ill a llo w $ 1 5 tra d e cred;'. fo r an y o th e r cop y p ro g ra m : r a i yo u have p u rch a se d to w a rd the
p u rch a se o t S U P E R C L O N E a t $ 4 9 9 5 ; ou m us t p ro v id e y r .a r o r ^ n a . p u rc h a s e d p ro d u c t and
s ta le w h y y o u w a n t ou rs ns ie a d T h is o f f c rr.dy be * i ;h c :ra w n at any tim e

r rwalldDlfc: num. ,

M ic r o n ^
DISTRIBUTING. INC

No. 75 - September 1984 MICRO 17

Multi-Tasking in FORTH
by Kenneth Butterfield

Los Alamos, New Mexico

SUMMARY

Multi-tasking is a method of allowing
your computer to work on more than
one program (task) at a time. I present a
program that allows two separate tasks
to run in the 'background' while still
having the FORTH in terp re ter
available in the 'foreground'. The
sample tasks are a clock display, and an
animated bouncing ball. These can be
replaced by just about anything;
including separate control programs for
'software robots'. I have given enough
detail to allow you to develop other
uses of multi-tasking.

I----------- IHE iB C iR F= ini— inr= i mi------------1

A technique and program for running
multiple tasks under FORTH.

i 1B 1 iBl -in i in i in i m i-----------

FORTH is more than a language; it is
an operating system as well. In
addition, FORTH has the advantage of
being changeable, and extendable. This
makes FORTH an ideal media for
learning how to implement various
system operations. This paper will
show how to implement one type of
multi-tasking system. It includes a
demonstration program comprised of
two separate tasks (programs] that
display the time, and a bouncing ball
on the screen while FORTH is waiting
for input from the keyboard.

To run this multi-task system you
will need a fig-FORTH system with an
assembler. The multi-task words will
work on any 6502 based machine with
modification being required only in the
stack partitioning (see section on
extensions). Stack partitioning is
defined in RESET.POINTERS, and I
have shown partitions for two FORTH
systems. The demonstration is written
for either PET or CBM machines with
version 3 or 4 BASIC. It should be easy
to m od ify m o st p arts of the
demonstration to work on other
computers.

For those who are very thorough

proofreaders, the demonstration can be
setup using screens 110, 111, 115, 116,
and 117. Screens 112, and 113 are
useful for debugging. Be sure the
assembler screens for your system are
loaded and then load screen 117. The
o th e r sc re e n s w ill be loaded
automatically. As compilation takes
place you will be told that some words
(KEY, EXPECT) are not unique. When
the prompt appears, run START. If
everything is correct you will have a
clock and a bouncing ball displayed on
the top of the screen. In addition,
FORTH will be ready for input from the
keyboard. Hit a RETURN and you
should get an 'OK' response. Try
adding two numbers and printing the
result. While you are typing, the
d isp lay w ill operate n o rm ally .
However, when you hit return it will
stop m om entarily while FORTH
interprets the line, and then it will start
up again. Now enter the following line.

: TEST 100 0 DO I . LOOP ; TEST

Note that the display is halted unril
TEST completes. Next enter

TEST1 100 0 DO I SLEEP . LOOP ; TEST1

This time the display should continue
while the numbers are being printed.
The lesson here is that you can define
any FORTH word so that the multi­
tasking continues simply by inserting
sleep anywhere inside the most active
loop.

If you are the cautious type, or if the
demonstration didn’t work, you will
want to debug each module separately.
Screen 112 contains a simple example
of multi-tasking that can be used to test
screens 110 and 111. If you don’t have a
Pet computer this screen will be the
easiest way to try multi-tasking, since
it w on 't require m odifying the
demonstration screens to run on your
machine. Each of the tasks in the
demonstration can be tested in a
regular (single-task) FORTH by
removing the SLEEP in KEY, BB, and
CLOCK. Once all of the pieces are
w orking properly, go back one
paragraph and try again.

A few words are in order regarding
the new input structure used in the
multi-tasking demonstration. It is
based on the FORTH model and stores
every key (including cursor keys). Both
the back cursor and delete keys will

18 MICRO No. 75 ■ September 1984

back up one space. All other cursor
keys are entered as part of the input.
When FORTH tries to interpret the line
you will get errors for any cursor key. If
you want to change the way FORTH
reads in a line all you need to do is
change the definition of EXPECT. This
is how PET INPUT works in Cargil and
Riley's FORTH. Incidently, you can
modify PET INPUT by adding a SLEEP
in one of the inner loops, and have
much nicer input for the multi-tasking
system.

TYPES OF MULTI-TASKING

There are many techniques that can be
used to implement multi-tasking
programs. These range from being
straightforward to being involved and
co m p le x . M ost m u lti-ta s k in g
techniques are simple in theory
regardless of how difficult they are to
implement. I will describe a couple of
methods, then show how to program
one method using FORTH.

The most familiar method of
performing a series of tasks is to do
them sequentially. In FORTH this is
done by defining a word for each task.
Next, these words are invoked in order,
either from the keyboard or from
another word. In BASIC the tasks
would be a set of subroutines and a
main program would be used to call the
subroutines in order. This method of
multi-tasking is sometimes called the
hen - and - piglets method [1].

The hen-and-piglets method is fine
for simple programs. It requires no
programming overhead. It is simple to
understand, and it is easy to add
another routine into the loop. The
main problem with this method is that
a slow task must finish before any
other task can start. How many times
have you waited for a long printout?
Another problem is that it might be
hard to determine the location for the
RETURN required for each subroutine.
For instance, in a terminal emulator
program, getting characters from the
keyboard and from the modem are
separate tasks. Sending characters to
the CRT and to the modem are other
tasks. Or are they? Characters are sent
to the modem only when received from
the keyboard. Should the task be to get
a character and send it? What if no
character is present? In this case the
task boundary becomes confused if a
RETURN is required.

Another type of multi-tasking is
tim esh arin g . For users of big
computers, timesharing is a well
known, and often cursed, way of life.
Timesharing has advantages, but it is
complex. I am prejudiced against
timesharing because it is almost
synonymous with multi-user systems.
I bought a computer to have it to
myself. On the other hand, timesharing
offers advantages to a single user who
can run more than one task at a time.
An example of this is spooling of
printer output. Spooling means writing
the listing to a disk file (fast), and then
copying the file to the printer (slow)
using a separate task. This task will
share time with all other scheduled
tasks making it look as though several
things are being done at the same time.

Timesharing is complex because
the time to switch tasks is usually
determined by a clock that interrupts
the CPU. The next task to run is
determined from a list of tasks and
their priorities. This requires some
c a lc u la tio n and adds to the
programming overhead. Fortunately,
there are other methods of multi­
tasking that can also have tasks run at
what appears to be the same time.

SLEEP
The method I am going to implement is
called SLEEP. SLEEP resembles the
hen-and piglets method, but has some
im portant differences, the main
difference being that each routine is a
closed loop. Instead of a RETURN at
the end of the task, a call to SLEEP is
inserted anywhere in the closed loop of
the routine. SLEEP then changes the
current task to the next task in a list. In
a sense SLEEP plays the part of the
main control loop in the hen-and-
piglets method.

As in the hen-and-piglets method,
tasks are changed under simple and
direct programmer control. There are
no automatic switchings of tasks at
unknown times and places as might
happen in a timeshared system. There
is also no need to write interrupt
handling routines. The order of the
tasks which will be run is determined
by SLEEP. There is no need to calculate
priorities at the time of a switch so
overhead is kept to a minimum.

Unlike the hen-and-piglets method,
tasks do not have to be completed
sequentially. SLEEP can multi-task a

series of routines so that they appear to
run simultaneously. This is possible
because the call to sleep does not have
to be at the end of the routine. If it is
placed inside of a loop (say at a point
that requires waiting for I/O), then
only one pass through the loop will be
completed before another task is given
time to run. Note that the call to sleep
can be anywhere in the loop. It can be
at the start, the end, or anywhere in the
middle. The programmer can chose a
place that makes sense to him. When
SLEEP next calls (awakens) the
routine, the loop will continue from
where it left off. SLEEP’S ability to run
tasks simultaneously is similar to
time-sharing, so spooling is one of its
possible uses.

One of the main advantages of
SLEEP over hen-and-piglets is that each
task can have its own stacks and
variable storage. If each task has
separate storage for data stack, it will
not interfere with any of the the other
tasks! In fact, two tasks may be the
same program. It is not necessary to
have separate copies of the programs for
each task. Only the data storage needs
to be separate. Of course, tasks can
interact with each other, when desired,
through the use of shared memory.

IMPLEMENTATION OF SLEEP

T h ere are sev eral g eneral
considerations that need to be kept in
mind when implementing a SLEEP
system. Each task should either be an
endless loop, or have some way of
removing itself from the list of tasks.
There needs to be a way to call SLEEP.
There needs to be a way to set up new
tasks. And last, there needs to be a way
to switch stacks, variable memory, and
program control.

For the sample m ulti-tasking
system implemented here, each of the
tasks will be an endless loop. This
keeps the system easier to understand
by removing spurious FORTH words.
Many problems will require that the
tasks be endless loops, so this system is
useful as it stands. For instance, in the
terminal emulator program mentioned
earlier, the tasks that monitor the
keyboard and modem continuously
check for receipt of characters. When a
character is received from either the
keyboard or the modem, it is stored in
the appropriate buffer. A third task will
check to see if the modem buffer has

No. 75 ■ September 1984 MICRO 19

anything in it. If there is a character, it
will be written to the screen. Then the
task will loop back to the start. A
fourth task would m onitor the
keyboard buffer and send characters to
the modem. All four tasks would be
endless loops. They would be written
and debugged independently of each
other, simplifying the programming
effort. In each of the four tasks, a single
call to SLEEP would be added
somewhere in the loop to tie the
system together.

FORTH provides a simple way to
call sleep. All that needs to be done is
to compile the name SLEEP somewhere
within the main loop of the task. This
can be done directly or indirectly.
Because one of the better places to put
SLEEP is at the end of a loop, one way
to compile SLEEP indirectly is to
redefine LOOP, REPEAT, UNTIL, etc.
T h is m akes program m ing look
identical to a non-SLEEP environment.
One problem with this approach is that
m ore than one SLEEP may be
compiled. This makes a task sleep
more times then necessary. The task
will still run but at a slower pace and
with more overhead for the SLEEP
program . Even though in d irect
compilation of SLEEP can be slower, I
generally use it because it is easier.
Words that work in a normal FORTH
environment need only to be reloaded
using the new loop words to work with
SLEEP.

The initialization of the FORTH
SLEEP system has several steps. Tasks
must be added to the list of tasks to
run. Separate stacks (and variable
storage areas) must be set up. The
return stacks for each of the tasks must
be initialized. The last step is to start
the system. In the example given on
screen 112 these steps are done by
running NEW.TASKS and MAIN.
NEW.TASKS uses RESET.POINTERS
to create separate return and data
stacks for each task, and uses
INIT.TASK to initialize the return
stack. MAIN starts the multi-tasking
system after it has been initialized. It
also serves as the list of tasks to run.

MAIN, the main control word,
awakens four tasks over and over until
the break or stop key is pressed. Each
task prints its number and then puts
itself to sleep. When it is reawakened,
it executes the AGAIN to loop back.
Thus, the output is a list of the task
numbers printed repeatedly in order.

In the example, the data and return
stacks have been partitioned into five
pieces by RESET.POINTERS. One
piece is for each of four slave tasks and
one is for the main task. INIT.TASK
pushes the parameter field address
(PFAJ of the word acting as a task onto
the appropriate location in the return
stack. The data stack needs no
initialization.

The key to changing tasks is the
word SWITCH. SWITCH saves the
current stack pointers, resets the stack
pointers for the next task, and transfers
co n tro l. T h e actual transfer is
performed by the FORTH word ;S.

In ordinary operation, ;S is
compiled into a colon definition by ;.
Hence, it serves as a return from
subroutine. ;S pops an address off the
return stack and places it in the IP
(in stru ction pointer) register. ;S
finishes with a jump to NEXT which
loads the W register from the address in
the IP. NEXT concludes by jumping
indirectly via the W register to machine
language code. (That's three levels of
indirection in ;S.)

The words TS1, TS2, TS3, and TS4
are required for SWITCH to work
properly. They push the task number
on th e data s ta ck and, m ore
importantly, set up the return stack for
the eventual return to MAIN. The
return stack preparation is devious.
The : used to define TS1, etc., compiles
th e word DOCOL. DOCOL is
FORTH's jump to subroutine. It pushes
the current value of the IP onto the
return stack. The ; (actually ;S) of TS1
is never executed. After the stacks have
been switched, the jump to ;S at the
end of SWITCH is performed instead.
This passes control to a new task
|TASK1). The new task will execute
until it reaches SLEEP. The stacks are
switched again, and finaly the return
address pushed to the return stack by
TS1 is loaded into the IP. Control is
now returned to MAIN. Hence, the
SWITCH located in SLEEP serves as the
; for TS1 and vice versa. Similar actions
occur for TS2, TS3 and TS4.

The initialization of the return
stack can now be understood. (See
definition of INIT.TASK.) TASK1 will
put the PFA on the data stack. The PFA
is then stored on the return stack, ready
to be used by SWITCH. The array RP
contains the initial values for each of
the separate return stack pointers. The
return stack is located in page one of

memory. The stack grows toward low
memory, and the stack pointer points
to the next available address. (See
Figure 1.) Thus $0101 is added to the
value obtained from RP when the
storage address for initializing the
return stack is calculated. The PFA of
the task is used because it points to the
list of code field addresses (CFA's) of
the words comprising the task. Hence,
it is the address of an address that
points to machine code. Counting the
return stack pointer, the three levels of
indirection needed for ;S are now
evident. [A m ore com plete discussion
o f the FORTH inner interpreter is
contained in reference 4],

address value return stack

pointer

01BF

01BE

01BD PFA HI

01BC PFA L0

01BB ... <== RP=BB

Figure 1. Initial return stack#1
where PFA is the parameter
field address of the task
that will be TASK1.

EXTENSIONS OF THE EXAMPLE

There are several points to consider
when using SLEEP with a more
complex set of tasks. These points
include determining the size of the
stacks and the technique used to store
the list of tasks to be switched. You
will also need to consider what types of
FORTH words are suitable for m ulti­
tasking and where to place any variable
torage.

An example of where things can go
wrong can be easily demonstrated.
While the demonstration (screen 117)
is operating define the following word.

: BALL A 12 300 0 DO MOVE POS DRAW SLEEP

LOOP DROP DROP ;

This BALL looks like BB except that it
runs for only 300 times. When you run
it, however, it doesn’t act at all the
same. In fact, the original ball is also
acting very strange. What went wrong?
The problem is that both BB and BALL
use the variables DX and DY. When
one of them needs to change direction,
the direction for both is changed. This
is an example of tasks sharing data
when they shouldn’t. To fix this

20 MICRO No. 75 - September 1984

problem either BALL should be
redefined starting from the definition of
DX and DY, or DX and DY should be
stored on the stack instead of in
variables. Since each tasks has its own
stack, there will be no interaction.

In the 6502 version of FORTH, the
data stack and return stacks are limited
in the amount of memory that they
have available. The FORTH return
stack uses the 6502 stack pointer. This
limits the size of the stack to one page
of memory. In addition, The terminal
input buffer (TIB) uses some of the
same space. Therefore, it is very
important to estimate the size for each
of the tasks to be multi-tasked and to
p a rtitio n the s ta ck m em o ry
accordingly. Two bytes of the return
stack are used for each level of nesting
of FORTH words. In addition, each
active DO LOOP requires another four
bytes, two bytes for the index counter,
and two for the counter limit.

The data stack has even less space
available then the return stack. FORTH
sets aside part of the zero page of
memory for this stack and uses the
6502 X register as a stack pointer. Zero
page is also used for the IP W, and other
FORTH registers. To make matters
worse, the PET uses half of zero page
for the operating system. Other
computers may also reserve zero page
storage.

The exact location of the data stack
limits will vary from one vendor's
version to another. For FULLFORTH,
the stack is from 4 to 6E. For FORTH
by Cargil and Riley, the stack is from
20 to 88. SO can be used to find the start
(high limit] of the data stack. SO is a
user variable that is normally used
during an ABORT to set the data stack
pointer. The lower limit is a little
harder to find. You will have to
decompile the word ?STACK [2], Most
versions of FORTH come with a word
to perform this function. If your
version does not, you will have to do it
by hand.

If either of the stacks is not long
enough for the multi-tasking system
you are implementing, then you will
have to set up separate stack storage
areas for each task. SWITCH will need
to be modified to copy the various
stacks into and back out of the separate
storage areas. If care is taken in the
rewriting of SWITCH, only the

currently used parts of the stack will be
copied. This care will minimize the
time needed to switch from one task to
another. The advantage of stack
swapping is that each task can have a
full sized data and return stack. The
disadvantage is that the overhead time
(the time spent while not doing the
required tasks] is larger than for
partitioned stacks.

A nother con sid eratio n when
implementing multi-tasking is the
method which is used for saving the list
of tasks to be executed. MAIN serves
this function in the current example.
Using the technique illustrated by
MAIN, it is possible to change tasks at
any time, even while multi-tasking is
going on. However, there will always
be the same number of active tasks. If
you only want three tasks, NUL.TASK
can used to replace one of the active
tasks. The price paid will be the time
sp en t sw itch in g to and from
NUL.TASK. The following line can be
used to replace task 2 by NUL.TASK.
1 NUL.TASK RP 2+Cg 101-H

Any of the other tasks can be similarly
replaced simply by changing the '2' to
the proper number.

If it is absolutely required that the
number of tasks be variable, some
other technique must be developed to
switch from one task to another.
Screen 113 is one way that it can be
done. The variable NUM.TASK is used
to store the current number of tasks.
The constant MAX.TASKS is the
maximum number of allowed tasks. A
new word TASK.SWITCH replaces
TS1, TS2, TS3 and TS4. SLEEP will
still be used by each of the tasks to
return to NEW.MAIN. NEW.MAIN
uses a DO LOOP index to determine
which task to execute next. When all of
the current tasks have been called
once, it loops back to the BEGIN.
NUM.TASK is used to set the number
of active tasks for this set of calls.

This new technique allows the
adding or subtracting of tasks, but the
initialization and task rem oval
problems are more complicated than
with the original system. You will need
to consider what to do when task 2 is to
be removed while task numbers 3 and 4
are still required. There are also
problems associated with adding a new
task to a list of tasks that have been in

operation for a period of time. In this
case only the new task's stacks should
be initialized. If all of the stacks were
initialized, each would 'forget1
everything that it had already
accomplished. In many situations that
could be a disaster. I have not given any
listings for solving these problems
because the solutions depend upon
whether stack partitioning or stack
switching is being used.

With either MAIN or NEW.MAIN
th e re are som e im p o rta n t
co n sid e ra tio n s for the task s
themselves. First, tasks must be colon
definitions. Tasks should either be
endless loops |BEGIN...AGAIN), or
provisions for termination of the task
will be required. Each task must call
SLEEP somewhere within the main
loop of the task. The last consideration
has to do with the storage of any
variables used by the separate tasks.

The best place to store variables is
on the data stack. If a FORTH variable
is used for storage, and more than one
task uses that variable, there is a good
possibility for confusion. This problem
can be formally stated as: tasks used in
a m ulti - tasking system have to be
reentrant. Reentrant means that two
versions of the same task can run at the
same time (but not necessarily in
synchronization). It isn't always
possible to use the data stack, and there
are at least two solutions for variable
storage provided by FORTH.

When only a small number of
variables are required, defining USER
variables is a good solution. A user
variable is used just like a regular
variable. The advantage is that USER
variables are addressed indirectly
through the user pointer (UP). The UP
can be changed for each task to point to
separate user table areas. Of course
these areas must be set aside and
protected. If USER variables are used
then SWITCH should be expanded to
include switching the UP. 6502
FORTH has 128 bytes set aside for the
original user table, and the first 48
variables are pre-defined as system
variables. These system variables will
need to copied into each of the user
tables during initialization.

If your application needs more
storage than is available in USER
variables, separate vocabularies for
each task might be a solution. This

No. 75 ■ September 1984 MICRO 21

o

o

©

Q

©

O

©

©

SCR it 110
0 CR ." TASK SWITCHING ROUTINES " BASE g HEX

1 (STORAGE FOR TASK STACK POINTERS)

2 (ROOM FOR 5 BYTES)

3 0 VARIABLE RP 3 ALLOT 0 VARIABLE SP 3 ALLOT

4 0 VARIABLE TASK# (CURRENT ACTIVE TASK)

5 CODE SWITCH (INDEX...) (SWITCHES TO NEW TASK)

6 (GET OLD AND NEW TASK NUMBERS)

7 TASK# IDY, 0 ,X LDA, TASK# STA, INX, INX,

8 (SAVE PRESENT POINTERS)

9 TXA, SP ,Y STA, TSX, TXA, RP ,Y STA,

10 (SET NEW POINTERS)

11 TASK# LDY, RP ,Y LDA, TAX, TXS, SP ,Y LDA, TAX,

12 (SWITCH TO NEW TASK)

13 ' ;S JMP,
14 BASE ! — >

SCR #

0 CR

1
2
3
4

5
6
7

8

9

10
11
12
13
14

15

BASE g HEX

111
. " TASK SWITCH— 2

SLEEP 0 SWITCH

TS1 1 SWITCH ;

TS2 2 SWITCH ;

TS3 3 SWITCH ;
TS4 4 SWITCH ;
NUL.TASK BEGIN SLEEP AGAIN ;

TASK INITIALIZATION WORDS)

RESET.POINTERS (INIT. POINTERS

SWITCH TO TASK

SWITCH TO TASK

SWITCH TO TASK
SWITCH TO TASK

E8 1 RP + C! 8B 2 RP + C! 6B

80 1 SP + C! 50 2 SP + C! 40

(60 1 SP ... 30 ... 20 ...
INIT.TASK (ADDR, INDEX___)

RP + Cg 101 + SWAP OVER !

1 SLEEP CFA SWAP 2 + !
BASE ! ;S

)
RP

SP

+ C! 54 4 RP + C!

+ C! 30 4 SP + C!

10 IS FOR FULLFORTH+)

(INDEX IS TASK NUMBER)

(ADDR IS CFA OF WORD)

(NEEDED FOR FIRST RUN)

SCR # 112

0 CR ." MULTI-TASKS FOR FORTH " BASE g DECIMAL

1 : MAIN BEGIN ." MAIN" TS1 TS2 TS3 TS4 ?TERMINAL UNTIL

2 : TASK1 BEGIN CR ." TASK 1 " SLEEP AGAIN

3 : T A S K BEGIN CR . " TASK 2 " SLEEP AGAIN

4 : TASK3 BEGIN CR ." TASK 3 " SLEEP AGAIN

5 : TASK4 BEGIN CR ." TASK 4 " SLEEP AGAIN

6 : NEW.TASKS (INITIALIZE STACKS AND RUN MAIN RUN LOOP)

7 RESET.POINTERS

' TASK1
' TASK2

1 TASK3
1 TASK4

MAIN
. " ALL DONE

INIT.TASK

INIT.TASK
INIT.TASK

INIT.TASK

9

10
11
12
13
14 ;
15 BASE ! (RESTORE BASE) ;S

SCR # 113

0 CR ." NEW MAIN LOOP ROUTINE
0 VARIABLE NUM.TASK (CURRENT NUMBER OF ACTIVE TASKS)

4 CONSTANT MAX.TASK (MAXIMUM NUMBER OF TASKS)

: TASK.SWITCH SWITCH ; (REQUIRED TO SUPPLY ;)

: NEW.MAIN
BEGIN NUM.TASK g 1+ 1 DO I I . TASK.SWITCH LOOP

7TERMINAL UNTIL

;S

allows for the use of standard variables
and arrays. Each task, with all of its
storage variables and arrays, will have
to be compiled into a vocabulary. If the
same FORTH word will be used for two
of the tasks, then it will have to be
loaded tw ice , once in to each
vocabulary. Vocabularies offer as much
storage as you have memory. The only
disadvantage is that the PFA’s of words
that will be tasks may be a little more
d ifficu lt to obtain . T hus, the
initialization process may be more
complicated then in the example.

CONCLUSION

The answer to the question What axe
the objectives o f a m ulti - tasking
system! will depend on who is asking
the question. Most people would agree
that the first two objectives are to
switch between tasks (programs) and to
avoid having tasks interfere with each
other. Two other objectives, mutually
exclusive, are to make the task
switching transparent to the user and
to optimize input/output operations.
There is a set of implementation
requirements that will have to be
satisfied for whatever set of objectives
is chosen. I have covered many of these
requirements in the text, but an
explicit listing of them might be in
order. Multi-tasking requires a method
of:
1) initializing the system
2) maintaining separate task data
storage
3) initiating the task switching
4) adding new tasks
5) terminating tasks that have been
completed.

All o£ this must be done in a way that
minimizes the time required. After all,
multi-tasking is useless if the tasks
never get a chance to run.

The FORTH program described in
this paper describes how to implement
the type of multi-tasking called SLEEP.
The key word in this program is
SWITCH. SWITCH trades the system
and task variables associated with the
old task for those variables associated
with the new task. Because of its
importance, SWITCH has been coded
in machine language. All of the other

22 MICRO No. 75 ■ September 1984

FORTH w ords are high level
definitions. Very little time penalty is
incurred for the high level words
because these w ords are used
infrequently. The balance between
machine language and FORTH words
in this program was chosen to illustrate
the point that the speed of operation of
a program can often be improved when
only a small piece is written in
machine language. [Since the initial
submission o f this article, two related
articles on multitasking have appeared.
See references 5 and 6.]

REFERENCES

1) A Sim ple Im plem en tation o f
M ulti-tasking , by Wendell Brown,
BYTE, Vol 6, 10, Oct. 1981, pg 176
2) fig - FORTH 6502 Assem bly Listing,
by W.F. Ragsdale, Sept. 1980, Forth
Interest Group, PO Box 1105, San
Carlos, Ca. 94070

3) fig - FORTH Installation Manual, by
W.F. Ragsdale, Nov. 1980
4) fig-FO R T H Interpreters, by C. H.
Ting, FORTH Dimensions Vol 6, #1,
May/June 1984, pg 12
5) A Simple Multitasker, by Ray
Duncan, FORTH Dimensions, Vol 5,
#2, July/August 1983, pg 20
6) A S im p le M u lt it a s k in g
Environment, by Martin B. Perti,
FORTH Dimensions, Vol 5, #2,
July/August 1983, pg 22

3 Q E 3 0 E

Ken recently completed his graduate
degree in Physics at the University of
New M e x ico . He has been
programming small computers for over
15 years, and doesn’t trust a computer
that he can't carry, or software that
doesn’t come with the source code. He
has worked in a variety of fields,
ranging from ranching in Colorado, to
Laser development at the Los Alamos
National Laboratory.

SCR I 115
0 CR ." TIME FUNCTION " BASE g DECIMAL

1 : TI l4l Cg 256 * 0 142 Cg 0 D+ DROP 256 U* 143 Cg 0 D+ ;

2 : SEG 0 § § DROP DROP ; : COLON 58 HOLD ; : L0C -32728 HLD !

3 : EMITTIME L0C SEG COLON SEG COLON SEG ;

4 : SMH 60 M/MOD ROT DROP 3600 M/ SWAP 0 60 M/ SWAP ;

5 : TIME BASE g DECIMAL TI SMH EMITTIME BASE ! ;

6 : CLOCK BEGIN TIME SLEEP AGAIN ;

7 CR . " BOUNCING BALL "

8 1 VARIABLE DX 1 VARIABLE DY

9 : XCHECK DUP 0= OVER 38 > OR IF DX g MINUS DX ! ENDIF ;
10 : YCHECK DUP 0= OVER 5 > OR IF DY g MINUS DY ! ENDIF ;

11 : P0S OVER OVER 40 * + 32768 + ; : DRAW 128 TOGGLE ;

12 : MOVE YCHECK SWAP XCHECK DX g + SWAP DY g + ;

13 : BB 1 3 P0S DRAW
14 BEGIN MOVE P0S DRAW SLEEP AGAIN DROP DROP ;
15 BASE ! — >

SCR § 116
0 CR ." DEFINE NEW FORTH SYSTEM INPUT STRUCTURE " BASE g HEX

1 CODE (KEY) XSAVE STX, FFE4 JSR, XSAVE LDX, PUSH0A JMP, FORTH
2 : CRSON 100 A7 ! ; (TURN CURSOR ON)

3 : CRSOFF 1 A8 C! BEGIN AA Cg UNTIL 1 A7 C! ; (CURSOR OFF)

4 : KEY CRSON BEGIN (KEY) SLEEP -DUP UNTIL CRSOFF ;

5 : EXPECT (TERMINAL INPUT MEMORY-2)

6 OVER + OVER DO KEY DUP 9D = IF DROP 14 ENDIF DUP 14 = (DEL?)

7 IF OVER I = DUP R > 2 - + > R - ELSE (NOT DEL) DUP 0D =

8 IF (RETURN) LEAVE DROP BL 0 ELSE DUP ENDIF

I C! 0 1 1 + ! ENDIF EMIT LOOP DROP ;
MQUERY TIB g 46 EXPECT 0 IN ! ; (LINE INPUT)

MQUIT (RESTART, INTERPRET FROM TERMINAL)

0 BLK ! [COMPILE] [BEGIN RP! CR MQUERY INTERPRET
STATE g 0= IF ." OK " ENDIF AGAIN ;

9
10
11
12
13
14 BASE ! ;S

SCR § 117
0 CR . " MULTI-TASKING FORTH " BASE g DECIMAL

110 LOAD 115 LOAD

6 USER S0 8 USER R0

MAIN BEGIN TS3 TS1 TS3 TS4 TS3 AGAIN ;
START (INITIALIZE- STACKS AND START MULTI-FORTH)

RESET.POINTERS

(NEXT 2 LINES HOOK INTERPRETER INTO SYSTEM)
1 SP + Cg S0 C! 1 RP + Cg R0 !

8 ' MQUIT CFA 1 QUIT !

9 ’ MQUIT 1 INIT.TASK

10 ’ BB 3 INIT.TASK

11 ' CLOCK 4 INIT.TASK
12 MAIN ; HEX

13 : STOP ' 0 CFA ' QUIT ! COLD ;

14 (STOP WILL RETURN TO REGULAR FORTH SYSTEM)

15 BASE ,-s

©

©

O

©

©

JMCRO
©

No. 75 • September 1984 MICRO 23

Structure Trees
in

FORTH
by Michael Dougherty

Littleton, Colorado

Introduction

When modifying a program, it is useful
to know the calling structure of that
program. That is, given a FORTH word,
XYZ, what is every FORTH word used
to define XYZ for all calling levels
down to the FORTH machine language
primitives? A graphical representation
of the calling structure is known as a
"structure chart” (refer to Structured
Design by Yourdon and Constantine].
"Structure tree” is the text equivalent.
In FORTH, a Structure Tree is an
indented listing of each "co lo n
definition” with all of the FORTH
words used to define that word.

For example, assume that the
following FORTH words have been
defined:

A 1 ;

B 2 +;

C 3 ;

D A B C / ;

AB A B ;

E AB D AB ;

A Structure Chart for word E is
shown in Figure 1. An equivalent
Structure Tree is shown in Figure 2. (In
this case, the Structure Tree shows the
calling levels of only the application
words.) For every colon definition, all
words comprising that word's defini­
tion are printed in an indented fashion.
For example, in Figure 2, word D in
line #8 is at level 1. Lines 8 through 16
comprise the Structure Tree of the
word D covering levels 1 through 3.
After the word, /, the level is back
to 1 and the Structure Tree of D is
completed. As can be seen, the
Structure Tree contains redundancy
not found in the Structure Chart.

SCR # 76
0 (STRUCTURE TREE UTILITY 831 BYTES) o
1

2 (To load the utility:

3 (76 LOAD

4 (
w

5 (TREE Usage:

6 (To list the Structure Tree)

7 (of word XYZ: o
8 (TREE XYZ

9

10 A
11 — >

SCR # 77 o
0 0 VARIABLE LEVEL (Current level of TREE branch)
1 10 VARIABLE MAX-LEVEL (Maximum TREE branch level)
2

3 : NULL ; (Dummy def to get : cfa value) o

4 ' NULL CFA 6 CONSTANT COLON (Pointer to code of : word)

5 ' ;S CFA CONSTANT SEMICOLON (Terminating CFA of : word)
6 o
7 ' 0BRANCH CFA CONSTANT '0BRANCH (Words compiling arguments)

8 ' BRANCH CFA CONSTANT 'BRANCH

9 ' LIT CFA CONSTANT 'LIT
10 ' CLIT CFA CONSTANT 'CLIT o
11 ' (LOOP) CFA CONSTANT 'LOOP

12 ' (+L00P) CFA CONSTANT ' +L00P

13 ' (.") CFA CONSTANT 1 M
A

14 o

15 - >

SCR # 78
o

0 (DRAW A BAR FOR THE CURRENT LEVEL)

1

2 : BAR (length ---) o

3 -DUP IF (If length > than 0)

4 0 DO (For length characters)

5 ASCII EMIT (Print a bar) o
6 LOOP

V

7 ENDIF ;
8

9 — > o

o

24 MICRO No. 75 • September 1984

Figure 1. Sample Structure Chart.

SCR § 79

1
2
3
4

5
6
7

8

9

10
11
12
13
14

15

(CASE STATEMENT BY DR. C. E. EAKER, FORTH DIMENSIONS [V2,#3])

: DOCASE ?COKP CSP 6 !CSP 4 ; IMMEDIATE

: < < 4 ?PAIRS COMPILE OVER COMPILE = COMPILE 0BRANCH

HERE 0 , COMPILE DROP 5 ; IMMEDIATE

: > > 5 ?PAIRS COMPILE BRANCH HERE 0 ,

SWAP 2 [COMPILE] ENDIF 4 ; IMMEDIATE

: ENDCASES 4 ’PAIRS COMPILE DROP

BEGIN SP@ CSP § = 0= WHILE
2 [COMPILE] ENDIF REPEAT

CSP ! ; IMMEDIATE

— >

SCR § 80

1

2

3
4

5
6

7
8

9

10
11
12
13
14

15

(PRINT THE ARGUMENT)

: PRINT-ARG

DOCASE

1 < < 2 + DUP C@ . 1 +

2 < < 2 + DUP 6 . 2 +

3 < < 2 + DUP C@ SWAP 1+
0 DO

DUP C@

EMIT

1+
LOOP

ENDCASES ;

— >

(addr n --- addr)

SWAP

> > (Skip/print 1 byte

> > (Skip/print 2 bytes

(Skip/print n bytes)

(For len of string)
(Get a dim str char)

(Print it)

Next string addr)(
> >

SCR # 81

©

©

0 (MOVE PFA ON STACK TO NEXT WORD)
1

2 : MOVE-WORD (addr --- addr+offset)

3 DUP § (Get cfa compiled at ptr]

4 DOCASE (Check for special move)

5 '0BRANCH < < 2 PRINT-ARG > > (Skip 2 byte offset)

6 ’BRANCH < < 2 PRINT-ARG > > (Skip 2 byte offset)

7 'LIT < < 2 PRINT-ARG > > (Skip 2 byte value)

8 'CLIT < < 1 PRINT-ARG > > (Skip 1 byte value)

9 'LOOP < < 2 PRINT-ARG > > (Skip 2 byte offset)

10 1+L00P < < 2 PRINT-ARG > > (Skip 2 byte offset)

11 1 rr < < 3 PRINT-ARG > > (Skip string till ")

12 SWAP 2 + SWAP (Skip only the ptr itself

13
14

15

ENDCASES

- >

1____AB
■»-|jL A

3 1

B

3 2

3 +

1____D
A

3 1
*-?i— B

3 *-?

T +

2 C

3 3

2 /

1____AB

2 A
3 1
*-? B

3 *“>

3 +

Figure 2. Sample Struture Tree
(for Structure Tree Utility)

The Structure Tree serves as a
"roadmap" of the FORTH application.
As in a roadmap, the Structure Tree
does not tell how execution travels
through the words. Instead, the
Structure Tree provides all the words
which could be called during the
execution of a specific word. When
modifying another programmer’s code
[or your own after a sufficient amount
of time], knowing who calls whom will
help identify the words which should
be changed.

Tree

The Structure Tree Utility, TREE, is
defined in Listing 1. TREE generates a
Structure Tree from the application
dictionary in memory. Once the TREE
and application are LOADed, the
Structure Tree of word XYZ is printed
by:

TREE XYZ

The output may be directed to the
printer by the Atari fig-FORTH word
PON. Since FORTH is a highly nested
language, a Structure Tree listing can
be quite lengthy. |The Structure Tree of

requires two and a half pages!] To
limit the nested listing, two parameters
are used in TREE. If a definition of a
word is below the current value of
FENCE, the Structure Tree will not
continue to a lower level for that
particular "tree branch." Further, the

No. 75 - September 1984 MICRO 25

maximum level of the Structure Tree
may be limited by the variable MAX-
LEVEL. In either case, a Structure Tree
branch will be terminated when TREE
encounters a word not defined as a
colon definition (i.e., VARIABLE,
CONSTANT, CODE, etc.). TREE may
be aborted while listing by simply
pressing any key other than BREAK.

Upon execution, TREE determines
the parameter field address (pfa) of the
next input word with " t ic k ” ('). The
name is printed and DO-TREE is used
to print the actual Structure Tree. DO-
TREE basically executes a loop until
there are no parameter field addresses
on the stack (i.e., when variable LEVEL
goes to zero). If the parameter field
address on top of the stack does not
point to the end of the definition (;S),
the name of that word is printed with
indentation determined by LEVEL. IF
the word is a colon definition not
defined below FENCE, and LEVEL is
less than MAX-LEVEL, then this new
pfa is pushed onto the stack, LEVEL is
incremented, and the loop repeated.
When the end of the colon definition is
reached, the pfa is popped off the stack,
DO-TREE moves the pfa to the next
word, LEVEL is decremented and the
loop again repeated. When LEVEL goes
to zero, the last pfa has been popped
and DO-TREE is finished.

The only problem with the FORTH
d iction ary is that words such
as BRANCH, LIT, and ." compile
arguments directly into the word
being TREEed. The word MOVE-
WORD is designed to skip these
co m p ile d a rg u m e n ts . If your
application has additional defining
words which compile arguments into
the definition, then MOVE-WORD will
have to be extended.

Conclusion

When faced with modifying a FORTH
ap p lica tion w ritten by another
programmer, the Structure Tree
generated by TREE can be an invaluable
tool. The Structure Tree allows one
to determine how a word is reached
during execution, as well as who the
word calls.

Reference

Structured Design, Fundamentals of a

Discipline of Computer Program and

Systems Design by Edward Yourdon and
Larrv L. Constantine.

SCR

0
1

82
(PRINT THE NAME WHOSE CFA IS POINTED TO BY STACK ADDR) O

1.
2 : PRINT-NAME (a d d r ---)

3 CR (New line for output) o
4 LEVEL g 3 -R (Print the level number)

5 LEVEL § 3 * BAR (Output a bar 3*LEVEL)
6 g (Get the cfa)
7 2 + (Move to the pfa) o
8 NFA (Move to nfa)
9 ID. ; (Print name)

10
11 — > o

SCR # 83 o
0
1

2

(PRINT A WORD TREE)

: DO-TREE (pf a ---)
o3 1 LEVEL ! (Init level to first)

4 BEGIN (Until the stack is empty)
5 ?TERMINAL IF ABORT ENDIF (Abort TREE if key pressed)
6 DUP g SEMICOLON = 0= IF (If not at a ;S word) o
7 DUP PRINT-NAME (Print the word down below)
8 dup e % COLON = (If lower word is a : def)

9 LEVEL e MAX-LEVEL g < AND (...and less than MAX-LEVEL)

10 OVER g FENCE g > AND IF (...and greater than fence) o
11 1 LEVEL +! (Go down to the next level)

12 DUP g 2 + (Get the pfa of that level)

13 — >
o

SCR

0

84
(PRINT A WORD TREE, CONT’D) o

1

2 ELSE (Not a colon)

3 MOVE-WORD (Move over to next)

4 ENDIF o
5 ELSE (End of a colon definition)
6 -1 LEVEL +! (Pop up to next level)

7 DROP (Drop the addr pointer) Q
8 MOVE-WORD (Move over)
9

10

ENDIF

LEVEL g 0= UNTIL ; (Until stack is empty)
11

12

SCR

— >

85

o

o
0
1

2

(USER ENTRY FOR TREE)

: TREE (... TREE word ...) o
3
4

CR

[COMPILE] ' (Get pfa of next input word)

5 DUP NFA ID. (Print word to be TREEed)
o6 DO-TREE (Print Structure Tree of pfa)

7

8

9

CR ;

:g o

4MCRO
o

26 MICRO No. 75 - September 1984

fe a tu n e

Text Write Edit Read Program
(T.W.E.R.P.)

Now reading, writing and editing textfiles
is easy.

by N.D. Greene
Storrs, Connecticut

Introduction

Sequential text files provide a method
for quickly storing and retrieving data.
They are essential for data-based
programs (such as telephone number
listing, accounts receivable, etc.). Also,
they have other useful applications.
Programs can be shortened by storing
variables and strings in a text file and
loading them after the program is run
(viz. during the first few lines). If
formatted properly, text files may be
used as exec files which greatly extend
programming flexibility. For example,
it is possible to rewrite a program while
it is running using an exec file.

Unfortunately, text files are hard to
use. There is no direct command to list
their contents. You cannot "se e" them
except indirectly. Files may contain
extra data or spaces and it is often
difficult to check for these conditions.
To write an exec file it is necessary to
create a cumbersome exec file program.

The T extfile Write Edit Read
Program (T.W.E.R.P.) was written to
help write and edit text files. Using
the program it is possible to read any
sequential text file and to add, remove
or edit any line within the file. Error

trap routines detect and prevent user
mistakes.

Program D escription

A program listing is shown in Figure 1.
The main program is only five lines
long (lines 10-50). It calls a series
of subprograms to perform various
functions (e.g. load, read, save). These
subprograms call other subroutines to
run frequently used operations. The
program has been written in modular
form with the modules separated by
remark statements. These are used
only to make it easier to review the
listing — they are not required to run
the program.

It may be helpful to briefly review
the program, since it contains several
routines which might be useful in your
programs. TWERP uses a command
rather than a self-prompting menu. The
program does not ask questions; it
waits for user commands. No cursor
appears unless the user has activated
a command which requires further
in p u t. N in e, s in g le , k ey stro k e
mnemomic commands (e.g., < R>
READ) are used, and they remain in
view at all times. A keypress is

detected with the WAIT command
(line 1200) and its value returned as K$.
This is examined and the program is
routed to the appropriate subprogram
using the short routine in lines 30-50.
If any key other than a code key is
pressed, the control is returned to line
30.

Files are loaded from either the
keyboard or disc. As prompted by the
program, entering K activates the
keyboard mode. Entering three *'s
terminates entry. Since the length of
a text file is often unknown, it is
difficult to read it completely without
an out of data error and program
termination. This problem is avoided
by using the ONERR command (line 5)
and then reading a disc text file until an
error occurs. Line 1000 tests for the out
of data error code (5). If it is present,
the file is closed and the total number
of lines (fields) is calculated by
subtracting 1 from the value of the loop
counter, I, that caused the error.

The file in memory may be
rev iew ed by the < R > READ
command. It may be saved at anytime
(with the option of changing its name].
Adding or deleting lines is done by
algorithms which insert or remove

No. 75 ■ September 1984 MICRO 27

lines and then renumber the file.
Adding a line except at the end of the
file, displaces the original lines
u pw ard. For ex a m p le , if
a new line number ,3 is inserted, the
original line number 3 becomes 4, the
original line number 4 becomes 5, and
so on. Similarly, if a line is deleted,
all lines with greater numbers are
displaced downward. If the < E> EDIT
command is chosen, the current line is
displayed together with a new, blank
line for entering changes. This new line
replaces the original.

The commands for catalog, print
and quit simply list the contents of the
current disc, print the file in memory
or end the program. The printout
should work with most printers.
However, if special commands are
needed, these may be entered at line
830 [printer on] and line 850 (printer
off I.

Error traps start at line 1000. As
noted before, this line is used to detect
the end of a data file. Lines, 1010,
1030 and 1040d are a universal error
routine which may be used in any
program. Line 1020 tests to see if any

records are in memory.
The subroutines are used by the

various subprograms extensively. All
inputs are entered via the input
anything subroutine*. Commas and
other characters forbidden by the
normal input command may be entered
and this routine limits the length of
lines to 255 characters. Backspacing
erases characters - a very helpful
feature. The wait routine mentioned
above, waits for a keypress by checking
address 49152 for a value greater than
128. It then converts this value into a
normal ACSII character and stores it is
K$. The wait address is then reset by a
poke to 49168. This is an excellent
routine for single keystroke menus.
The w ink cursor is a sim ilar
subroutine, frequently used by Beagle
Bros.* in their commercial programs.
It loops through the wait and reset
addresses while overprinting to achieve
a blinking effect. Center title is also
a useful programming tool. The caption
to be centered is sent to the subroutine
as an M$ string together with the
desired vtab, V. Since arrow labels are
used throughout the program, it was

written here as a subroutine.

Program Applications

This program works with Apple II, II +
and II/e Computers**. Errors may
occur if it is run on systems with

, DOS moved to a language card. Using
V^TWERP, text file manipulation is

aTtnosi j i£ easy_ as jrograrn m in g in
BASIC. It is especially easy to create
exec files, one of the more powerful and
less used routines available in
Applesoft**. TWERP also provides an
easy way to rename text files and/or to
transfer them to another disk.

A cknow ledgem ents

Thanks to R.H. Gandhi for his helpful
suggestions and to L. Fosdick for
supplying the input anything routine
and his permission to use it in this
program.

‘ Written by L. Fosdick, E G. & G
Princeton Applied Research, Princeton, NJ

*Beagle Bros, Inc., San Diego, CA

'•Registered Trademark

Listing 1

O
TEXTFILE WRITE EDIT READ PROGRAM

Q (T.W.E.R.P)

30 CALL 54915: G0SUB 1200: FOR I = 1 TO 9:
N.D. GREENE IF K$ = MID$ ("LRSADECPQ",I,1) THEN 50

COPYRIGHT (C) 1983 40 NEXT
o ,=============================== 50 ON I G0SUB 100,200,300,400,500,600,700,800,

5 D$ = CHR$ (13) + CHR$ (4): DIM S$(500): 900,30
POKE 44452,19: POKE 44605,18: 60 REM

Q 0NERR GOTO 1000 61 REM LOAD FILE

6 REM 62 REM

7 REM MAIN PROGRAM 100 HOME : VTAB 10: HTAB 5: PRINT "FILE NAME:";

8 REM 110 V = 20:M$(l) = ” D DISK < K > KEYBOARD":

O 10 HOME :V = 10: M$(2) = "< D> DISK < K> KEYBOARD": G0SUB 1210:

= "TEXTFILE WRITE EDIT READ PROGRAM": IF K$ < > "D" AND K$ < > "K" THEN 110

G0SUB 1190:V = 12 : M$ = "(T.W.E.R.P.)": 120 VTAB 20: HTAB 1: CALL - 868:

q G0SUB 1190: PRINT : VTAB 21: IF K$ = "K" THEN F$ = "KEYBOARD":ST = 1:

FOR I = 1 TO 40: PRINT GOTO 170

NEXT 130 VTAB 10: HTAB 16: G0SUB 1100

20 VTAB 22: 140 F$ = T$: PRINT D$;"VERIFY";F$:

G PRINT "< C> CATALOG" TAB(17) "< A> ADD" TAB(32) PRINT D$; "0PEN";F$: : PRINT D$; "READ "; F$:

"< P> PRINT";: HOME:V = 10:M$ = "LOADING FILE.": G0SUB 1190:

PRINT < L > LOAD" TAB(17) "< D> DELETE" TAB(32) FOR I = 1 TO 500:S$(I) = ""

_ "< S> SAVE PRINT "< R> 150 GET K$:

0 READ" TAB(17)" < E> EDIT" TAB(32) "< Q> QUIT"; IF K$ < > CHR$ (13) THEN S$(I) = S$(I) + K$:

:VTAB 4: POKE 35,20

o
GOTO 150

28 MICRO No. 75 ■ September 1984

(continued)

.....

O

160 PRINT NEXT : GOTO 30 480 S$(I) = T$:N = N + 1: HOME :V = 10: O
170 HOME : V = 1:M$ = "ENTER => * * * < = TO STOP" : M$ = "ADDED LINE NO: " + STR$ (NA) :

GOSUB 1190: PRINT : PRINT : GOSUB 1190: GOTO 30
FOR I = ST TO 500: PRINT 481 REM A

180 NX = I: GOSUB 1230: GOSUB 1100:S$(I) = T$: 482 REM DELETE LINES
IF S$(I) = " * * * " THEN N = I - 1:V = 10: 483 REM
M$ = "ENTRY ENDED AT LINE NO: " + STR$ (N): 500 GOSUB 1020: HOME : VTAB 10: HTAB 5:
HOME : GOSUB 1190: PRINT "DELETE LINE NO: : GOSUB o

GOTO 30 1100:ND = VAL (T$) : IF ND < 1 OR ND > N THEN 500
190 NEXT 510 HOME : VTAB 10:NX = ND: GOSUB 1230:
191 REM PRINT S$(ND)
192 REM READ FILE 520 V = 20:M$(1) = " D DELETE < E> EXIT" o

193 REM M$(2) = " < D > DELETE E EXIT":
200 GOSUB 1020: HOME : FOR I = 1 TO N:NX = I: GOSUB 1210: IF K$ = "D" THEN 550

GOSUB 1230: PRINT S$(I): IF 530 IF K$ = "E" THEN 380 o
PEEK (37) < 17 THEN 220 540 GOTO 520

210 V = 20:M$(1) = "PRESS ANY KEY FOR MORE": 550 IF ND = N THEN N = N - 1: GOTO 570
M$(2) = "PRESS ANY < KEY> FOR 560 FOR I = ND TO N - 1:S$(I) = S$(I + 1):
MORE: GOSUB 1210: HOME NEXT :N = N - 1 G

220 NEXT : GOTO 30 570 HOME :V = 10:M$ = "DELETED LINE NO: ":
221 REM GOSUB 1190: PRINT ND: GOTO 30
222 REM SAVE FILE 571 REM

O
223 REM 572 REM EDIT LINES
300 GOSUB 1020: HOME : VTAB 10: HTAB 5: 57 3 REM

PRINT "FILE NAME: ";F$ 600 GOSUB 1020: HOME : VTAB 10: HTAB 5:

310 V = 20: PRINT "EDIT LINE NO: : GOSUB 1100: O
M$(1) = "< S> SAVE C CHANGE < E> EXIT": NE = VAL (T$): IF NE < 1 OR NE > N THEN 600
M$(2) = " S SAVE < C> 610 HOME : VTAB 8:NX = NE: GOSUB 1230:
CHANGE E EXIT": GOSUB 1210: PRINT S$(NE) : PRINT : PRINT : GOSUB

FOR I = 1 TO 3 : IF K$ = MID$ 1230: GOSUB 1100 O
("SCE", 1, 1) THEN 330 620 V = 20 :M$ (1) = " < A > ADD E EXIT":

320 NEXT M$(2) = " A ADD < E > EXIT": GOSUB

330 ON I GOTO 340,370,380,310 1210:IF K$ = "A" THEN 650 o
340 V = 10:M$ = " SAVING FILE " 630 IF K$ = "E" THEN 380

350 HOME : GOSUB 1190: PRINT D$"OPEN"F$: 640 GOTO 620
PRINT D$"DELETE"F$: PRINT 650 S$(NE) = T$: HOME' :V = 10:
D$"OPEN"F$:PRINT D$ "WRITE"F$ M$ = "EDITED LINE NO: " + STR$ (NE): O

360 FOR I = 1 TO N: PRINT S$(I): NEXT : GOSUB 1190: GOTO 30
PRINT "CLOSE": HOME :V = 10:M$ = 651 REM

"FILE SAVED": GOSUB 1190: GOTO 30 652 REM CATALOG
O370 VTAB 14: HTAB 5: PRINT "NEW NAME: " ; : 653 REM

GOSUB 1100:F$ = T$: GOTO 300 700 HOME : PRINT D$; "CATALOG" : V = 20:
380 HOME : GOTO 30 M$(l) = "PRESS ANY < KEY> TO CONTINUE

381 REM :M$(2) = "PRESS ANY KEY TO CONTINUE": O
382 REM ADD LINES GOSUB 1210: GOTO 380
383 REM 704 REM
400 GOSUB 1020: HOME : VTAB 10: HTAB 5: 705 REM PRINT

PRINT "ADD LINE NO: GOSUB 1100: 706 REM o

NA = VAL (T$): IF NA < 1 OR NA > N + 1 800 GOSUB 1020: HOME :V = 10:
THEN 400 M$ = "TURN PRINTER ON": GOSUB 1190:V = 13:

410 IF NA = N + 1 THEN ST = N + 1: GOTO 170 M$(1) = " < S > START E EXIT": o
420 HOME : VTAB 10:NX = NA: GOSUB 1230: M$(2) = " S START < E> EXIT": GOSUB 1210:

GOSUB 1100 IF K$ = "S" THEN 830

430 V = 20: M$ (1) = " < A > ADD E EXIT": 810 IF K$ = "E" THEN 380

M$(2) = " A ADD < E > EXIT": GOSUB 820 GOTO 800 o
1210:1 = N + 1: IF K$ = "A" THEN 460 830 PR# 1: PRINT

440 IF K$ = "E" THEN 380 840 FOR I = 1 TO N:

450 GOTO 430 PRINT CHR$ (91);I; CHR$ (93);"=> ";S$(I): NEXT _
460 S$(I) = S$(I - 1):I = I - 1: 850 PR# 0

IF I = NA GOTO 480 860 V = 12:M$ = "PRINTOUT COMPLETED": HOME
470 GOTO 460 GOSUB 1190: GOTO 30

n

(C o n tin u ed on n ex t page)

No. 75 • September 1984 MICRO 29

MicroMotionMasterFORTH
It’s here — the next generation
of MicroMotion Forth.

• Meets all provisions, extensions and experimental
proposals of the FORTH-83 International Standard.

• Uses the host operating system file structure (APPLE
DOS 3.3 & CP/M 2.x).

• Built-in micro-assembler with numeric local labels.
• Afull screen editor is provided which includes 16 x

64 format, can push & pop more than one line,
user definable controls, upper/lower case key­
board entry, A COPY utility moves screens within &
between lines, line stack, redefinable control
keys, and search & replace commands.

• Includes all file primitives described in Kernigan
and Plauger's Software Tools.

• The input and output streams are fully redirectable.
• The editor, assembler and screen copy utilities are

provided as relocatable object modules. They
are brought into the dictionary on demand and
may be released with a single command.

• Many key nucleus commands are vectored. Error
handling, number parsing, keyboard translation
and so on can be redefined as needed by user
programs. They are automatically returned to
their previous definitions when the program is
forgotten.

• The string-handling package is the finest and
most complete available.

• A listing of the nucleus is provided as part of the
documentation

• The language implementation exactly matches
the one described in FORTH TOOLS, by Anderson
& Tracy. This 200 page tutorial and reference
manual is included with MasterFORTH

• Floating Point & HIRES options available.
• Available for APPLE ll/ll+ /lle & CP/M 2.x users.
• MasterFORTH -$100.00. FP & HIRES-$40.00 each
• Publications

• FORTH TOOLS - $20.00
• 83 International Standard - $15.00
• FORTH-83 Source Listing 6502, 8080, 8086 -

$20.00 each.

(continued)
O

862 REM

863 REM QUIT

864 REM

900 TEXT : POKE 44452,22: POKE 44605,21: HOME :

POKE 216,0: END
904 REM

905 REM ERROR TRAPS
906 REM

1000 IF PEEK (222) = 5 THEN PRINT D$;"CLOSE":

N = I - 1: HOME : VTAB 10: HTAB 12:

PRINT N;» RECORDS LOADED": GOTO 30
1010 HOME :V = 12:M$ = "ERROR CODE:": GOSUB 1190

PRINT PEEK (222): GOSUB 1040: GOTO 380

1020 IF N == 0 THEN HOME :V = 12:

M$ = "NO RECORDS IN MEMORY": GOSUB 1190:

o
o

GOSUB 1040: GOTO 380

1030 RETURN O
1040 FLASH :V = 10:M$ = "OPERATOR ALERT":

GOSUB 1190: NORMAL :V = 20:

M$(l) = "PRESS ANY < KEY> TO RESET":

M$(2) = "PRESS ANY KEY TO RESET":

GOSUB 1210: RETURN

1050 REM

1051 REM SUBROUTINES Q
1052 REM

1054 REM INPUT ANYTHING

1055 REM
1100 T$ = "":K = 0 O
1110 GET K$:J = ASC (K$): IF J = 8 THEN 1150

1120 IF J = 13 THEN RETURN

1130 IF K = 255 THEN 1110 ~
1140 PRINT K$;:T$ = T$ + K$:K = K + 1: GOTO 1110

1150 IF K = 0 THEN 1110

1160 PRINT K$;" ";K$;:K = K - 1: IF K = 0 THEN 1100

1170 T$ = LEFT$ (T$,K): GOTO 1110 ©

1180 RETURN : REM
1182 REM

1183 REM CENTER TITLE
1184 REM O

1190 VTAB V: HTAB 21 - LEN (M$) / 2: PRINT M$; :

RETURN

1192 REM q

1193 REM WAIT FOR KEYPRESS

1194 REM

1200 WAIT 49152,128:
K$ = CHR$ (PEEK (49152) - 128): POKE 49168,0:0

RETURN

1201 REM

1202 REM WINK CURSOR Q
1204 REM

1210 SPEED= 220:M$ = M$(l): GOSUB 1190:M$ = M$(2):

GOSUB 1190:K = PEEK (49152):

IF K < 128 THEN 1210 ©

1220 K$ = CHR$ (K - 128): SPEED= 255: POKE 49168,0:

RETURN

1221 REM

1222 REM ARROW LABEL °

1223 REM
1230 PRINT : HTAB 1: INVERSE : PRINT NX;: NORMAL :

PRINT "=> "; : RETURN Q

JMCftO ©

30 MICRO No. 75 - September 193

\

Graphic Print for C-64
Part 3

by Michael J. Keryan
Tallmadge, Ohio

In the first two parts of this series, we
developed a program to produce a
graphic screen dump for most popular
non-Commodore printers. The fast
machine language program can be used
to print graphic files from a number of
popular graphic programs. In this last
installment, we will show how to get
full-color printouts using your existing
dot-matrix printer.

Add full color to your graphic printouts
without a color printer.

Introduction

The graphic print program described in
the last two issues will give a HiRes or
MULTIcolor graphic dump in various
dot patterns — the density of the dot
patterns is proportional to the darkness
of the actual colors used in the picture.
Sixteen different patterns are used so
that even two colors that look identical
on a black and white monitor can be
distinguished on the printout. What
can be better than this? Color. There
are several methods that you can use to
get full-color hard copies of graphic
displays created on your Commodore
64.

One method is to use a good quality
35mm camera with color film and
shoot the pictures displayed on your
color monitor. This is probably the best
way to create slides for presentations.
The third party graphic programs
available for the Commodore 64 will
create outstanding title slides, graphs,
bar charts, and pictures. This method
can also be used to create larger color
prints, but this can be expensive for a
full-page enlargement.

A second method is to buy a color
printer or plotter. Several new color
dot-matrix printers have recently been
introduced; some use m ulti-color
ribbons, some use ink-jet technology.
You can get one for $600-$1000 + . If
you want to create a lot of color prints,

you can probably justify one. If you
don't yet have a printer and are
thinking of getting a color dot-matrix
printer for general-purpose use, make
sure it can produce a good sharp black
letter. Many of these color printers
produce only 3 colors, and create black
by mixing all 3; black letters may
appear as smeared gray. Color plotters
are used m ainly for very high
resolution line plots, graphs, and
charts. They are not generally used for
dumping color pictures, but software
could be written to do this by drawing a
large number of short lines. However,
this would be extremely slow.

A third method (and the one
described in this article) is to use color
ribbons with your existing dot-matrix
printer. If you have a good quality
graphic p rin ter, w ant full-page
printouts in color only occasionally,
and are willing to invest some of your
time but not much money, this method
is for you. It works by overprinting the
same printout several times, once for
each ribbon color.

C olor Ribbons

The first thing you will need is a set of
color ribbons. A number of printer

supply firms sell ribbons in various
colors for most popular printers at
about 30% higher cost than the
standard ribbons. The ribbon cartridges
are exactly the same as your black
ribbons; the only difference is the color
of the ink on the ribbon. Note that a set
of ribbons is used — one for each
color — multicolor ribbons are not
used. Another way to obtain a set of
color ribbons is to ink your own. You
can buy new, uninked ribbons, place
them in your old cartridges, and use
one of the new mechanical inking
gadgets that wind the ribbon while
applying ink.

How many colors will you need?
Well that depends on the type of
pictures you want printed and on the
colors that you can obtain. You
certainly do not need all 16 colors that
the Commodore 64 can produce. Many
of th ese can be created from
combinations and varying patterns of
other colors. If you can find them, use
black, blue, red, and yellow. All the
other colors can be generated from
these. Unfortunately, I could not find a
source for yellow ribbons (if you know
where I can get a yellow Prowriter
ribbon, let me know), so I used black,
blue, red, green, and brown. With

No. 75 • September 1984 MICRO 31

these, all colors except yellow and
orange can be generated.

Keep the ribbon cartridges in plastic
bags that can be sealed to keep the ink
from drying out. Make sure the rollers
in the cartridges turn smoothly.
Nothing is more frustrating than
having a ribbon stick halfway through
the last color of a five color printout.

Helpful H ints

As previously noted, the color prints
are made by printing over the same
page (or pages] several times, once for
each color. A lot of things can go wrong
while you're doing this. Here are a few
pointers that I've picked up in the last
several months; they may save you
some time and grief:
1. Be prepared to spend an hour or more
to get a few prints. If you are only
printing one, make several copies — 3
or 4 to be safe. That way if a ribbon
jams or a page is misaligned, the others
should still be good. Save up your
pictures to be printed and do them all
in one session. This will reduce the
number of ribbon swaps.
2. If you are using pin-feed paper,
prepare the paper beforehand. The perfs
tend to tear apart when moving the
paper up and down several times to get
all colors printed. A partially tom perf
will catch and cause the paper to jam.
Prior to printing, take out the paper,
tape over the perfs with scotch tape,
and then place it back in your printer.
You can even form a continuous loop
with several sheets, avoiding the need
to backtrack the platen.
3. Prior to printing the first color on
each page, draw an index line in pencil,
aligning the mark to some stationary
point on the printer carriage or frame.
For subsequent colors, make sure this
alignment mark is in the same place.
4. A misalignment of even one dot
(1/72 inch] is quite noticeable. If a
misalignment is obvious while printing
a page, turn off the printer with the off­
line or select switch on the printer,
then try to align the page by adjusting
the platen. Although you won't be able
to save the current page, subsequent
pages (see tip 1) should then end up
perfectly aligned.
5. Some printers have a panel that must
be removed when changing ribbons. A
micro switch will not allow printing
when this panel is removed. To save
you some time, remove this panel and
tape down the micro switch to defeat
it. Then leave the panel off while you
are getting your color prints.

Even by using all the above pre­
cautions, I've yet to get correct align­
ment of all colors on the first page of 4
copies that I print. My average is about
50% of all copies with no noticeable
misalignment. But the results are
rewarding.

C olor Print

A BASIC program to create color
printouts is given in Listing 1. This
program is based on the program in last
month's MICRO. All the machine
language routines are the same. The
only changes necessary are the printer
matrix codes for each color. These
codes change with each ribbon color.
The program first loads, from diskette,
the machine language routines "
GDUM P+ M OVE", then jumps to line
2000. Here the type of picture is
selected. Then in lines 2120-2250 the
printer specific information is defined.
Change the values for variables PT,
NT, and SD for your printer/interface
set-up, then save the revised program.
The picture file is then loaded into
memory from disk. While loading this
file, the CRT will display the following
menu:

AFTER PICTURE LOADS, PRESS:

P FOR BLACK/WHITE PRINT

COLOR PRINT:

B FOR BLACK RIBBON

N FOR BROWN RIBBON

U FOR BLUE RIBBON

R FOR RED RIBBON

G FOR GREEN RIBBON

E TO EXIT

The program works as last months
program for black/white printouts
when pressing P. For color prints, first
set up the paper and the first ribbon,
then press the key that corresponds to
that color. After one (or more) prints of
that particular color are finished,
change the ribbon, set up the paper
back to the beginning, then press the
key for the new color. Keep this up
until all required colors are printed.
Then press E to exit.

The color pattern information in
matrix CM (see lines 2350-2360] is
POKEd to the machine language
routine in lines 1150-1320, then the
printer dump is executed (line 1330).
This loop is repeated for each color.

Dots are printed for each combina­
tion of screen color and ribbon color

containing an X in the table below. A
high density of dots is printed for dark
colors, a lower density for lighter
colors.

Ribbon C o lo r

S c r e e n

C o lo r B la c k Brown Red Green Blu e

B la c k X
White
Red
Cyan
P u rp le
Green
B lu e
Yellow-
Orange
Brown
L ig h t Red
Gray 1 X
Gray 2 X
L ig h t Green -
L ig h t B lu e
Gray 3 X

If you have ribbons of different
colors or would like to experiment with
different shades or color codes, change
the data in lines 4000-4050. Line 4000
contains the pattern codes as described
in part 1 of this series. The other DATA
lines (one line for each ribbon] point to
the 0 to 15th term in line 4000. There
are 16 entries in each line, one entry for
each color (0 black, 1 white, etc.). All
zeroes in these lines will print no dots
for those color/ribbon combinations.

The programs described in this 3 part
series of articles can be obtained on
1541 format disks for $15 (US] from
MICRO (disk number MD-4).

[Editors Note: The picture on page 22 of the

July issue (part 2 of this series) is titled

" M IDDLE EARTH” and was created by

Wayne Schmidt of New York City, using

Doodle by City Software and is a demo on

the Doodle disk. Credit was inadvertantly

omitted.]

Michael J. Keryan has written a number of
articles in MICRO, BYTE, and COMPUTER

and ELECTRONICS involving machine
language utility programs and hardware
add-ons for various m ic r o c o m p u te rs ,
including OSI, TRS-80 and Commodore 64.
His DOES - IT program to extend the
capabilities of the C64 by implementing
k e y b o a r d - c a l la b le m a c h i n e lan g u age
routines and supporting swapping of
machine language programs appeared in
recent issues of M ICRO (January through
April/May 19841.

X
X X

X - X
X

X
X
X X X -

X
X

X
X

32 MICRO No. 75 - September 1984

No. 75 ■ September 1984 MICRO 33

o

® Listing 1

© 1000 REM BASIC PROGRAM TO SUPPORT GDUMP 2180 :
1005 REM PROVIDES COLOR PRINTOUTS 2190 NT = 0: REM INTERFACE TYPE
1010 REM M.J.KERYAN 3-30-84 2200 : REM CONNECTION = 0

0 1020 : 2210 : REM OTHERS = 1

1030 IF A=0 THEN A=l: LOAD" GDUMP+MOVE",6,1 2220 :
1040 IF A=1 THEN A=2: GOTO 2000 2230 SD = 6: REM SECONDARY ADDRESS
1050 POKE 20491,PT: POKE 20492,SD 2240 : REM FOR TRANSPARENT

O 1060 POKE 20493,NT: POKE 20487,NP 2250 :
1070 SYS GT 2260 GT = 21808 + (TY-l)*3
1080 IF TY=2 OR TY=4 THEN MD=PEEK(53270): 2270 IF GT> 21820 THEN GT=21820

0 MD=3-((MD AND 16)/16): POKE 20494,MD 2280 IF TY=1 THEN 3000
G 1090 IF TY=3 OR TY=5 THEN POKE 20494,3 2290 PRINT"{D0WN2}NOW PUT IN DISK WITH THE PICTURE FILE."

1100 IF TY=6 THEN POKE 20494,0 2300 INPUT"{DOWN}NAME OF PICTURE";NM$
1110 GETK$: IF K$< > ""THEN 1110 2310 PRINT"{DOWN}AFTER PICTURE LOADS, PRESS:"

O 1120 GETK$:IF K$="" THEN 1120 2320 PRINT" P FOR BLACK/WHITE PRINT"
1130 IF K$="P" THEN SYS 20480: GOTO 1800 2321 PRINT
1140 IF K$= "E" THEN 1800 2322 PRINT" COLOR PRINT:"
1150 C=0: IF K$="B" THEN C=1 2323 PRINT" B FOR BLACK RIBBON"

© 1160 IF K$="N" THEN C=2 2324 PRINT" N FOR BROWN RIBBON"
1170 IF K$="R" THEN C=3 2325 PRINT" U FOR BLUE RIBBON"
1180 IF K$="G" THEN C=4 2326 PRINT" R FOR RED RIBBON"

q 1190 IF K$="U" THEN C=5 2327 PRINT" G FOR GREEN RIBBON"

1200 IF C=0 THEN 1110 2329 PRINT
1300 FOR M=0 TO 15: MM=21182+M: NN=21198+M 2330 PRINT" E TO EXIT"
1310 POKE MM,CM(C,M): POKE NN,CM(0,M) 2340 DIM CM(5,15)

o 1320 NEXT M 2350 FOR 1=0 TO 5: FOR J=0 TO 15
1330 SYS 20480: GOTO 1110 2360 READ MM: CM(I,J)=MM: NEXTJ: NEXTI

1800 : REM QUIT 2370 IF TY=4 THEN LOAD "? " + N M $ + , 8,1

1840 POKE 53265,(PEEK(53265)AND223) 2380 IF TY< > 4 THEN LOAD NM$+"*",8,1
® 1850 POKE 53270,(PEEK(53270)AND207) 2900 :

1860 POKE 53272,21 3000 REM CREATE A SIMON'S BASIC PROGRAM

1870 POKE 53280,6: POKE 53281,15: POKE 646,0 3010 Q$=CHR$(34)
Q 1880 PRINT"{CLEAR}": END 3020 PRINT"{CLEAR}1 IF A=1 THEN A=2:

2000 POKE 53280,6: POKE 53281,15: POKE 646,0 LOAD"Q$" GDUMP+MOVE"Q$",8,1"

2010 PRINT"{CLEAR,DOWN2}WHICH TYPE OF PICTURE?" 3030 PRINT"2 IF A=0 THEN A=l: GOTO 7
2020 PRINT 3040 PRINT"3 POKE 20491, "PT" :POKE 20492,"SD

© 2030 PRINT" 1 SIMON'S BASIC" 3050 PRINT"4 POKE 20493,"NT" :POKE 20487, "NP":
2040 PRINT" 2 ULTRABASIC-64" SYS 21808"

2050 PRINT" 3 DOODLE" 3060 PRINT"5 A=PEEK(53270): A=(A AND 16)/16"

2060 PRINT" 4 KOALAPAINTER" 3070 PRINT"6 A=3-A: POKE 20494,A: SYS 20480: END"

0 2070 PRINT" 5 SLIDESHOW" 3080 PRINT"7 REM APPEND YOUR PROGRAM HERE"

2080 PRINT" 6 SLIDESHOW - INVERTED" . 3090 PRINT"SAVE"Q$"SIMON.GDUMP"Q$",8"

2090 INPUT" ";TY 3100 POKE 631,19: FOR A=632 TO 639: POKE A,13: NEXT A

o 2100*frF TY< 1 OR TY> 6 THEN 2000 3110 POKE 198,9: NEW

2110 : 4000 DATA 0,5,32,10,64,20,1,40,159,165,90,

2120 PT = 0: REM PRINTER TYPE 130,219,135,80,255
2130 : REM NEC/PROWRITER = 0 4010 DATA 15,0,0,0,0,0,0,0,0,0,0,12,13,0,0,3

® 2140 : REM EPSON OR SIMILAR = 1 4020 DATA 0,0,0,0,0,0,0,2,4,15,0,0,0,0,0,0

2150 : 4030 DATA 0,0,15,0,9,0,0,0,6,0,9,0,0,0,0,0

2160 NP = 3: IF PT=1 THEN NP = 2 4040 DATA 0,0,0,5,0,15,0,0,2,0,0,0,0,9,0,0
0 2170 : REM REPEAT CODE 4050 DATA 0,0,0,11,10,0,15,0,0,0,0,0,0,0,10,0

o JMCOO

o

34 MICRO No. 75 ■ September 1984

There are three ways to learn 6502 Assembly Language on your Apple Computer:

Hard Easy Easiest

Introducing the Easiest Way: The LISA Ed Pac™

Y o u c a n ’t d e n y th a t le a rn in g a s s e m b ly is e x tre m e ly im p o r ta n t fo r y o u if y o u w a n t to m a k e th e m o s t o f y o u r w o rk . If a s s e m b ly la n g u a g e w a s n 't so
im p o r ta n t , w h y a re a lm o s t a ll o f th e to p s e ll in g p ro g ra m s a v a ila b le fo r th e A p p le II w r it te n in a s s e m b ly la n g u a g e ? B u t le t ’s fa c e it, le a rn in g 6 5 0 2
a s s e m b ly la n g u a g e is n ’t a p ie c e o f c a k e . A t le a s t n o t u n t il now . B e c a u s e n o w th e re ’s th e L IS A E d u c a tio n P a c k a g e " fro m L a z e rw a re . It 'l l h a v e y o u up
to s p e e d w ith a s s e m b ly la n g u a g e in a fra c t io n o f th e t im e it w o u ld o th e rw is e take .

T h e L IS A E d P a c “ b e g in s w ith L IS A v2 .6 . th e fa v o r ite a s s e m b le r o f b e g in n e rs a n d p ro fe s s io n a ls a like . M o re A p p le o w n e rs h a v e le a rn e d 6 5 0 2
a s s e m b ly la n g u a g e u s in g L IS A th a n a ll th e o th e r a s s e m b le rs c o m b in e d . M o re tu to r ia l m a te r ia l is a v a ila b le fo r L IS A , in c lu d in g b o o k s b y D. F u d g e , R.
H yd e , W. M a u re r, a n d R. M o tto la . R a n d y H y d e 's 3 0 0 -p a g e U s in g 6 5 0 2 A s s e m b l y L a n g u a g e is in c lu d e d in th e L IS A Ed P a c “ .

N e x t w e th re w in S P E E D /A S M ” , a s e t o f 6 5 0 2 s u b ro u t in e s th a t m a k e p ro g ra m in g in a s s e m b ly la n g u a g e as e a s y as B A S IC . A n d fo r th o s e w h o w a n t to
se e h o w it ’s d o n e , th e S P E E D /A S M s o u rc e lis t in g s a re a ls o in c lu d e d . W e a ls o in c lu d e d th e L U D * 1 (L is a U t il ity D is k # 1) w h ic h in c lu d e s an e x te n d e d
e d ito r fo r L IS A a n d a L IS A s o u rc e f i le l is t in g u t il ity . F in a lly , w e a d d e d M A X W E L L 'S D e b u g g e r " to th e L IS A Ed Pac. T h is u ltra -p o w e rfu !
d e b u g g e r /m o n ito r m a k e s le a rn in g a n d d e b u g g in g 6 5 0 2 a s s e m b ly la n g u a g e a b re e ze .

L IS A E d P a c P r ic e S 1 4 9 .9 5 . A $ 2 2 9 .7 5 V a lu e (s u g g e s te d re ta il) .
A v a ila b le a t d e a le r s e v e ry w h e re , o r d ire c t ly from

F o r a c o p y of L a z w e r w a r e s A Gu ide to Purch,is,nt.; j 6?■':/ J s ‘ V'o; ;r Appip n . v .\r; n v . ,. ,< L .. ,* S ' CO' O- ' i C-"- Q ’ ' 2 0 ry cal l u !. a t i 71 4) 7 3 5 - 1 0 4 1
No t e LI SA LI SA v2 6 U S A Er: Pa. - LI SA Educ a t i ona l P a r M >'■ S p . ' - : Ac>r.* M 1 •; n i-.. s.- ,v . .
Appl e Appl e II and Applp p t r a de ma r k s of Applt- Cor^o. , - . ' -

fe a tu n e

□ □ Q .

V*#'
\>Art '

Approximating the Square Root
of the Sum

of the Squares
A fast method of calculating
this useful function.

If I were asked to make a list of what I
thought were the most often executed
computer calculations in the world,7
very near the top of that list would
the following equation:

S=SQR((X**2.) + 5 (Y**2.))

This square root of the sum of the
squares calculation is used for all kinds
of different things. It crops up in
electronics, in physics, in geometry,
and in ju st about every other
imaginable field. It is widely used
because it is the equation for
calculating the magnitude of two
r e c ta n g u la r co m p o n e n ts — of
anything. It tends to be a repetitive
calculation, especially in the world of
grap h ics and an im a tio n w here
computers are called on to perform it
hundreds of times.

Since this is true, a computer
technique that will save just one
microsecond executing the calculation
is precious. Using such a technique in a
repetitive application subtracts one
microsecond from the execution time
for each loop and you wind up finishing
your task much faster than you
otherwise would have.

Bearing all that in mind, consider
the value of the following technique; it
saves tens or hundreds of microseconds
for each repetition.

Skeptical? Don't be. The method is
incredibly simple. It is incredibly fast.
It is, without further ado:

/'
SPRIME=a*X + b*Y ^

That’s it.
It's an approximation, of course,

but jjlease, keep reading. With the
cnbice of a and b the peak error

'’of this approximation is a grand total of
4.01 percent. No misprint there, a
maxjrhum error of 4.01 percent.

Ah, good. You're paying attention
again. Now then, think of how much
faster your computer will be able to do
SPRIME = a *X + b*Y than it could
S = SQR((X * * 2.) + (Y**2.).

The optimal (from a minimal peak
error perspective) values of a and b are
a = 0.961 and b = 0.398, to three
decimal places. Use those and SPRIME
will never vary from S by more than
4.01 percent. For those of you who
haven't realized it yet, you probably
will never see graphics errors that
small.

For the assembly language inclined
readers, here's another tidbit of value.
Suppose we choose values of a and b
that are related to powers of two. The
a*X and b*Y operations then become
simple shifts of X or Y an amount equal
to what the power of two a or b is.
Doing that is thousands of times faster
than a full-fledged _Jlaating-point
multiply.

It turns ojif^hat the optimal [binary-
related vakoes are not exactly powers of
two. The values are a = 1. (nj? problem
there) / and b = .375, ae^m to three
decimal places. Sinte-'tfis notarj_exa£t.
power of-tw€ryou iiaver^crmr-a- little
more than just a simple shift. Namely,
shift Y three times to the right (.125 JY f
and add the result to its£lf-"'twice
(. 125*3 = .375). Thails-stilTmuch fg
than any_jloating-point multipl

------fncidently, this combination of
coefficients yields a peak ^rror of 6.8
percent.

n o n
by Chris Williams

Ogden, Utah

Is there a catch? Yes, but i t ’s a small
one. Your X must be greater than Y. If
i t isn't tQ'Start with, simply switch
coefficients. ___

A similar procedure can be done in
3-D. In that case, we'd be approxi­
mating R =SQ R (((X **2.) + (Y**2.) +
(Z **2.))J, and we'd do so with
RPRIME = (((a*X) + (b’ Y) + (c*Z))l.
The optimal, binary-related coeffi­
cients are a = 1 .0 , b = .375 and c = .25.
The peak error is 9.68 percent. This is
allowing a maximum right shift of
three. You could achieve superior peak
error performance if you shifted more,
but you'd lose significance as bits were
shifted off the end of the byte. Three
seems a good compromise.

Accompanying this article is a
program that demonstrates the validity
of the above claims. It’s written in
A p p lesoft, but th e r e ’s n o th in g
particularly machine dependent in it,
so you should be able to get it to run on
any BASIC machine.

The outputs are shown in Fig.2. The
S value represents the results from
A p p le s o ft 's s tra ig h tfo rw a rd
SQR((X**2.) + (Y**2.)| calculation.
SPRIME is the approximation value.
Both are computed for 0 < X/Y < 1.0
in steps of 0.1. Error is computed as a
percentage and is ((S - SPRIME] / S) *
100.
j So that's it. It's a good technique.

/Try it.

leference

M ag n itu d e A p p r o x im a t io n s fo r
Xiciopiocessor Implementation by W.
Thomas Adams and John Brady, IEEE

Micro, October 1983

36 MICRO No. 75 ■ September 198̂

15

12.5

10

t

211 1/2

1 2 3 4 5 6

Y

15

10

12.5

SPRIME

Figure 1. Graphs show how
nearly identical the

10

t

i

two functions are. 0 1 2 3 4 5 6 7 8

Y

9 10

5 REM ERROR VALIDATION PROGRAM
s SPRIME ERROR {%) 6 REM BY C WILLIAMS, 3/84

1 10.0498756 10.008 .416678098 10 HOME : VTAB 1 O
2 10.198039 10.406 2.03922505 20 PRINT " S"; : HTAB 15: PRINT "SPRIME"; :

3 10.4403065 10.804 3.48355178 HTAB 28: PRINT "ERROR (*)"
4 10.7703296 11.202 4.00795888 30 POKE 34,2: VTAB 3 o
5 11.1803399 11.6 3.7535541 40 FOR Y = 1 TO 10.
6 11.6619038 11.998 2.88200115 50 X = 10.
7 12.2065556 12.396 1.55198879 60 s = ((X t 2.) + (Y t 2.)) 0.5
8 12.8062485 12.794 .0956445798 70 SPRIME = (0.961 * X) + (0.398 * Y) o
9 13.4536241 13.192 1.94463627 80 DF = ABS ((S - SPRIME) / S) * 100.

10 14.1421356 13.59 3.90418847 90 PRINT Y;: HTAB 4: PRINT S; : HTAB 15:

Figure 2. Validity Program Outputs 100
110

PRINT SPRIME;: HTAB 28: PRINT DF

NEXT

END

o
JMCftO

No. 75 ■ September 1984 MICRO 37

FLOPPY DISKS SALE *$1.19 ea.
Economy Model or Cadillac Quality

i d r^ n . We have the lowest prices! LOR/4NCffiTiMfD P ffiS O M l coMPuite o$k

•ECONOMY DISKS
Good quality 5 'A " single sided single density with hub rings.

Bulk Pac 100 Qty. $1.19 ea. Total Price $119.00
10 Qty. 1.39 ea. Total Price 13.90

CADILLAC QUALITY (double density)
• Each disk certified • Free replacement lifetime warranty • Automatic dust remover
For those who want cadillac quality we have the Loran Floppy Disk. Used by professionals because they can rely
on Loran Disks to store important data and programs without fear of loss! Each Loran disk is 100% certified (an
exclusive process) plus each disk carries an exclusive FREE REPLACEMENT LIFETIME WARRANTY. With Loran
disks you can have the peace of mind without the frustration of program loss after hours spent in program
development.
100% CERTIFICATION TEST
Some floppy disk manufacturers only sample test on a batch basis the disks they sell, and then claim they are
certified. Each Loran disk is individually checked so you will never experience data or program loss during your
lifetime!
FREE REPLACEMENT LIFETIME WARRANTY
We are so sure of Loran Disks that we give you a free replacement warranty against failure to perform due to faul­
ty materials or workmanship for as long as you own your Loran disk.

AUTOMATIC DUST REMOVER
Just like a record needle, disk drive heads must travel hundreds of miles over disk surfaces. Unlike other floppy
disks the Loran smooth surface finish saves disk drive head wear during the life of the disk. (A rough surface will
grind your disk drive head like sandpaper). The lint free automatic CLEANING LINER makes sure the disk-killers
(dust & dirt) are being constantly cleaned while the disk is being operated. PLUS the Loran Disk has the highest
probability rate of any other disk in the industry for storing and retaining data w ithout loss for the life of the disk.

Loran is definitely the Cadillac disk in the world
Just to prove it even further, we are offering these super LOW INTRODUCTORY PRICES

List $4.99 ea. INTRODUCTORY SALE PRICE $2.99 ea. (Box of 10 only) Total price $29.90
$3.33 ea. (3 quantity) Total price $9.99

All LORAN disks come w ith hub rings and sleeves in an attractive package.

DISK DRIVE CLEANER s19.95
Everyone needs a disk drive doctor

FACTS
• 60% of all drive downtime is directly related to poorly maintained drives'*
• Drives should be cleaned each week regardless of use.
• Drives are sensitive to smoke, dust and all m icro particles.
• Systematic operator performed maintenance is the best way of ensuring error free use of your computer

system.
The Cheetah disk drive cleaner can be used with single or double sided 5%" disk drives. The Cheetah is an
easy to use fast method of maintaining efficient floppy diskette drive operation.
The Cheetah cleaner comes with 2 disks and is packed in a protective plastic folder to prevent contamination.
List $29.951 Sale $19.95 * Coupon $16.95

A d d $3.00 fo r sh ip p in g , h a n d lin g and in su ra n ce . I llin o is res ide n ts
p lease add 6*/. ta x . A d d $6.00 fo r C A N A D A , PUERTO RICO, H A W A II,
ALASKA, APO -FPO o rd e rs . C a nad ian o rd e rs m ust be in U.S. d o lla rs .
WE DO NOT EXPORT TO OTHER COUNTRIES.
Enclose C ash iers Check, M o n e y O rd e r o r P e rsona l C heck. A llo w 14
days fo r d e liv e ry , 2 to 7 days fo r pho ne o rd e rs , 1 day e xp re ss m a il I

VISA — MASTER CARD — C .O .D .
_____ N o C .O .D . to C anada , APO-FPO

PROTECTO
ENTERPRIZES - - - - -
BO X 5£0, B A R R IN G T O N . IL L IN O IS 60010
Phone 3 1 2 3 3 2 5244 to ord«r

B I G F O U R
NEW 128K — MEGA BYTE DUAL DISK D R IV E -8 0 COLUMN

COMPUTER SYSTEM SALE!
HOME • BUSINESS • WORD PROCESSING

List Price $3717 .95

LOOK AT ALL YOU GET FOR ONLY $895.

©
<D

B 128 C O M M O D O R E 1 2 8 K 8 0 C O L U M N C O M P U T E R

8 0 5 0 D U A L DISK DRIVE (o ve r 1 m i l l i o n by tes)

4 0 2 3 100 CPS - 8 0 C O L U M N B I D I R E C T I O N A L PRI NTER

LIST PRICE
$ 9 9 5 0 0

1 79 5 0 0

4 9 9 0 0

12" HI R E SO L UT I ON 8 0 C O L U M N GRE E N OR A M B E R M O N I T O R 2 4 9 0 0

BOX OF 10 L OR A N L I FE T I ME G U A R A N T E E D DISKS 4 9 . 9 5

1 1 0 0 SH E E TS F A N FO LD PAPER 19 9 5

ALL CA B L E S N E ED E D FOR I N T E R F A C I N G 1 02 05

TO T A L LIST PRICE $ 3717.95

Printer replacement options (replace the 4023 with the following at these sale prices)

O l y m p i a Ex e cu t i v e Let t e r Qu a l i t y Ser ia l P r i n t er

C o m s t a r H i - S p ee d 1 60 CPS 15' . ' / ' S e r i a l - B u s m e s s P r i n t e r

T e l e c o m m u n i c a t i o n s D e l u x e M o d e r n P a ck a ge

LIST
$ 6 9 9 0 0
$ 7 79 00

$ 199 0 0

SALE
$ 399 .00
$ 4 9 9 .00
$ 139.00

Plus You Can Order These Business Programs At Sale Prices

Prof es s i on al 8 0 C c l u ^ n

Wo,ru Proce ssor

P rof ess ion al Data Base
Arc'oSSts Recet\<at;ie
Ac co u n ts Payable

L IS T

$ 1 4 9 96

149 95
149 95

149 95

S A L E

$99.00

99 00
99 00
99.00

Payrol l

Inve ntory
G ene ra l Ledger

F m a n a a ' S pr ea d S he e1.
P rog ram Ge ne ra to r

L IS T

$1 4 9 95

149 95
149 9b

149 95
149 9 C

S A L E

$99 00
99 00
99 00
99 00
99.00

15 DAY FREE TRIAL We g ive you 15 d a y s to try o u t th is SUPER SYSTEM P A C K A G E " If it d o e s n 't r re e t yo u r expe c

ta t o ris. |u s t send it b a ck to us p re p a id a n d w e w ill re fu n d y o u r p u rc h a s e p r ic e "

9 0 DAY IM M E D IA T E RE P LA C E M E N T W A R R A N TY If any of th e SUPER SYSTEM PACKAGE e q u ip m e n t or o ro g 'a rn s

fa il d u e to fa u lty w o rk m a n s h ip o r m a te r ia l

I/I/rite or Call For Free Catalog and Spec Sheets!!

PROTECTO
ENTERPRIZES IWE LOVE oufl CJSTOMEBSi
BOX 550, BARRINGTON, ILLINOIS 60010
Phont 312/382-5244 10 order

lA d d $ 5 0 .0 0 for shipping and handling!!
$ 1 0 0 .0 0 for Canada, Puerto Rico, Hawaii orders.
WE DO NOT EXPORT TO O TH E R C O U N T R IE S

J E n c lo se C a s h ie rs C h e ck . M o n e y O rd e r o r P e rso n a l C h e c k A llo w
I 14 d a y s to r d e liv e ry , 2 to 7 d a y s fo r p h o n e o rd e rs . 1 d a y e x p re s s
| m a i l1 C a n a d a o rd e rs m u s t be in U S d o lla rs W e a c c e p t V isa an d
j M a s te rC a rd We s h ip C O D to U S a d d re s s e s o n ly

No. 75 ■ September 1984 MICRO 39

•SANYO MONITOR SALE!!

9" Data Monitor

• 80 C o l u m n s x 24 lines
• G reen text d isp lay

• E a sy to read - no e y e strain

• Up front b r i g h t n e s s control

• High resolution g r a p h ic s

• Q u ick start - no p reheat ing

• R e g u la te d p o w e r s u p p ly

• Attract ive metal c a b in e t

• UL and F C C a p pro v e d

12" Screen Amber or Green Text Display^99
• 15 Day Free Trial - 90 Day Im m ediate R eplacem ent W arranty

12" Hi-Resolution Amber or Green Screen Monitor $119.00
this is a 1000 Line, 80 Column, High Resolution Monitor with crisp dear
text that is easy to read! A must for Word Processing! Includes special
Software Discount coupon.
List $249.00 SALE $119.00

14" Hi-Resolution Color Monitor $229.00
This 14" color monitor has the sharpest and clearest resolution of any
color monitor we have tested! Beautiful color contrast! Also compatib le
with video recorders. Includes special Software Discount coupon.
List $399.00 SALE $229.00 (IBM Compatable)

• LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
• BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

Add $10 00 for shipping handling and in turanc*. I lf in o ij r«jid«n?s
pl«a«**pdd6% tax Add $20.00 for CANADA PUERTO RICO. HAWAII.
ALASKA APO-FPO o rd tr i . Canadian o rd«rt must b« in U S. dollar*.
WE DO NOT EXPORT TO OTHER COUNTRIES.
Endoi# C o ih i« n Ch«cK. Mon«y O rd«r ar P«r»onol Ch«ck. A llow H
day i for d«liv«ry -2 fo 7 day* for phon# ord«r». 1 day • x p r t i i m a il!

ENTERPRIZES (W l I O V I O U K C U » T O M £ M !

VISA — MASTER CARD — C.O.D
BOX 550, BARRINOTON, ILLINOIS 60010
Phon* 312/3*2-5244 to ordar

40 MICRO No. 75 ■ September 198^

FANTASTIC COMPUTER PRINTER SALE!!

• Lowest Priced, Best Quality, Tractor-Friction Printers in the U.S.A.
Fast 80-120-160 Characters Per Seconc • 40 ,46 ,66 ,80 ,96 ,132 Characters Per Line Spacing

• Word Processing • Print Labels, Letters, Graphs and Tables • List Your Programs
Print Out Data from Modem Services • “The Most Important Accessory for Your Computer”

* * DELUXE COMSTAR T /F
80 CPS Printer - $169 .00

T h i s C O M S T A R T F (T r a c t o r F r i c t i on)

P R I N T E R is e x c e p t i o n a l l y v e r s a t r e It

p r i n t s 8 x 1 1 " s ta n d a . ' d s i / e s i ng l e s h ee t
s t a t i o n a r y o r c o n t i n u o u s f e e d c o m p u t e r

p a p e r B i - d i r e c t i o n a l , i m p a t t d o t m a t r i x .
8 0 CPS. 2 2 4 c h a r a c t e r s >' C e n t r o n i c s

Par a l l e l I n t e r f a c t)

Premium Quality 120 -140 CPS
10" COM STAR PLU S +

Printer $26 9 .0 0
T h e C O M - S T A R P L U S + g i ve s yen. a I ■ t he
f e a t u r e s o f t h e C O M S T A R T / F P R I N T E R

p l u s a 1 0" c a r r i a ge . 1 2 0 1 4 0 CPS. 9 x 9 d o t
m a t r i x w i t h d o u b l e s t r i k e c a p a b i l i t y f o r 18 x
18 d o t m a t r i x (near l e t t e r q ua l i t y) , h i gh

r e s o l u t i o n b i t i m a g e (1 2 0 x 1 44 d o t
m a t r i x) , u n d e r l i n i n g , b a c k s p a c i n g , lef t

a n d r i g h t m a r g i n s e t t i ng s , t r u e l ower
d e c e n d e r s w i t h s u p e r a n d s u b s c r i p t s ,
p r i n t s s t a n d a r d , i ta l i c , b l o c k g r a p h i c s a nd

s p e c i a l c h a r a c t e r s . It g i ve s yo u p r i n t
q u a l i t y a n d f e a t u r e s f o u n d c n p r i n t e r s

c o s t i n g t w i c e as m u c h ! 1 (C e n t r o n i c s

Pa r a l l e l I n t e r a c e) (B e t t e r t h a n E p s on

F X 8 0) L i s t $ 4 9 9 . 0 0 SALE $ 2 6 9 .0 0

Premium Quality 120-140 CPS
1 5 % "COM-STAR PLU S+
Business Printer $379 .00

H a s al l t he " e a t u r e s o f t he 1 0" C O M - S T A R

P L U S + P R I N T E R p l u s 1 5 ' / / ' c a r n a g e a nd
m o r e p o w e r f u l e l e c t r o n i c s c o m p o n e n t s to

h a n d l e l a r ge l e d g e r b u s i n e s s f o r m s !
(B e t t e r t h a n E ps o n FX 1 0 0) L i s t $ 5 9 9

SALE $ 3 7 9 .0 0 .

Superior Quality 140-160 CPS
10" COM STAR PLUS +

IBM Pers/Bus Printer $389 .00
H as al l t he f e a t u r e s o f t h e 1 0" C O M - S T A R

P L U S + P R I NT E R ! It is e s p e c i a l l y d e s i g n e d
fo r al l I B M p e r s o n a l c o m p u t e r s ' 1 40 160

CPS H I G H SP E E D P R I N T I N G 1 0 0 % d u t y
cy c l e , 2 K bu f f e r , d i v e r s e c h a ra c te r f on t s ,

s p e c i a l s y m b o l s a n d t r u e d e c e n d e r s ,
v e r t i ca l a n d h o r i z o n t a l t abs .
A RED H O T I B M p e r s o n a l b u s i n e s s p r i n t e r
at an u n b e l i e v e a b l e l ow p r i c e o f $ 3 8 9 . 0 0

p l u s o n e / e a r i m m e d i a t e r e p l a c e m e n t

w a r r a n t y (c e n t r o n i c s p a r a l l e l i n t e r f a c e)
L i s t $ 6 9 9 SALE $ 3 8 9 .0 0

--------PARALLEL INTERFACES---------

Superior Quality 160-180 CPS
10" COM STAR PLUS +

Business Printer $399 .00
T h i s S U P E R H I G H SPEED C O M STAR
P L U S + P RI N TE R 1 6 0 - 1 8 0 CPS has a 1 0"

c a r r i a g e w i t h al l t he C OM S TA R P L US +

f e a t u r e s b u i l t i n 1 It is e s p e c i a l l y d e s i g n e d

wi t .n m o r e p o w e r f u l e l e c t r o n i c s to h a n d l e
l arger l ed ge r b u s i n e s s f o r m s 1 Ex c l us i v e

b o t t o m f e e d 1 (C e n t r o n i c s p a r a l l e l

I n t e r f a c e) a l so c o m p a t a b l e w i t h al l I B M
P e r s o n a l / B u s i n e s s C o m p u t o r s ! 1 O n e y e a r

i m m e d i a t e r e p l a c e m e n t w a r r a n t y

Li st $ 6 9 9 SALE $399
1 5 W Printer List $ 7 9 9 SALE $499 .

O O lym pia
Executive Letter Quality

DAISY WHEEL PRINTER $399 .00
T h i s is t he w o r l d s f i n e s t d a i s y w h e e l p r i n t e r

Fantastic Letter Quality, up to 2 0 CPS
b i d i r e c t i o n a l , w i l l h a n d l e 14 . 4 f o i m s
w i d t h 1 H as a 2 5 6 c h a r a c t e r p r i n t b u l f e r .

s p e c i a l p r i n t e n h a n c e m e n t s , b u i l t in
trac to r- feed (C e n tro n ic s P a ra lle l and

R S 2 3 2 C I n t e r f a c e) L i s t $ 6 9 9 SALE $3 99 .

For V I C - 2 0 a n d C O M - 6 4 — $ 4 9 0 0 For A p p l e c o m p u t e r s — $ 7 9 . 0 0 A t a r i 8 5 0 I n t e r f a c e — $ 7 9 . 0 0 For AL L I BM C o m p u t e r s — $ 8 9 0 0

15 Day Free Trial-180 Day Immediate Replacement Warranty
j A d d $14 50 fo r s h ip p in g , h a n d lin g a n d in s u ra n c e . W E D O N O T E X P O R T {
j TO O T H E R C O U N T R IE S E X C E P T C A N A D A . j
■ E n c lo s e C a s h ie rs C h e c k , M o n e y O rd e r o r P e rs o n a l C h e c k . A l lo w 14 d a ys j
j fo r d e l iv e ry , 2 to 7 d a y s fo r p h o n e o rd e rs , 1 d a y e x p re s s m a il! C a n a d a •
I o rd e r s m u s t b e in U .S . d o l la rs . V IS A — M A S T E R C A R D A C C E P T E D . W e j
| s h ip C .O .D . I

PROTECTO
(W E L O V E O U R C U S T O M E R S)ENTERPRIZES

BOX 550, BARRINGTON, ILLINOIS 60010
Phon* 312/382-5244 to order

C O M - S T A R PLUS+
P r in t E x am p le :

A B C D E F G H I J K L M N Q P Q R 8 T U V W X Y Z
ABCDEFGH2 JKU1N0PC1R8TUVWXYZ 1 2 3 4 S 6 7 Q 9 0

No. 75 ■ September 1984 MICRO 41

Commodore • 64

SCRIPT-64 EXECUTIVE WORD PROCESSOR
(80 Columns in Color)
40 or 80 columns in color or black and white; turns your com puter into a Business
Machine!
Rated best by COMMODORE. This is the finest word processor available. Features in­
clude line and paragraph insertion/deletion, indentation, right and left jus tif ica tion,
titles, page numbering, characters per inch, etc. All features are easy to use and under­
stand. With tabs, etc. SCRIPT-64 even includes a 250 word dictionary/spell ing checker to
make sure your spelling is correct. The dictionary is user customizable to any technical
words you may use. Furthermore, all paragraphs can be printed in writ ing and everyday
letters are a snap. To top things off, there is a 100 page manual and help screens to
make learning how to use SCRIPT-64 a snap. This word processor is so complete we
can ’t think of anything it doesn’t have. When combined with the complete database you
have a powerful mailmerge and label program that lets you customize any mailing list
w ith personalized letters. List $99.95. Sale $59.00. ^Coupon Price $49.00. (Disk only.)

SCRIPT-64 20,000 WORD DICTIONARY
Allows you to check spelling on 20,000 most often mispelled words! List $29.95. Sale
$19.95. "‘Coupon Price $12.50 (Disk only.)

SCRIPT-64 COMPLETE DATABASE
(Plus Mail Merge and Labels)
This powerful DATABASE is user friendly and makes any information easy to store and
retrieve. The user defines the fields and then can add, change, delete, and search for
any category wanted! Must be used with the SCRIPT-64 EXECUTIVE WORD PROC­
ESSOR. When combined with the Executive Word Processor you can search out any
category (zip codes, even hair color, etc.) and print super personalized letters! 600
names can be sorted and formulated on each disk in any order or category! Will handle
any size mailing list by changing or adding disks! List $69.00. Sale $39.00. ‘ Coupon
Price $29.00.

• LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
• BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

WE SHIP C.O.D. HONOR VISA AND MASTER CHARGE
ADD $3.00 SHIPPING FOR C.O.D. ADD $2.00 MORE
SPECIAL SERVICES:
One Day — Express Mail add $10.00

PROTECTO
i w e l O v e o u p C u s t o m EPS)ENTERPRIZES

BOX 550, BARRINGTON, ILLINOIS 60010
Phone 312/382-5244 to ord«r

O OlympiaEXECUTIVE LETTER QUALITY

"DAISY WHEEL PRINTERS"

Executive Letter Quality Printer

World's Finest Computer Printer
List Price $699 SALE $399

• Daisywheel printer, bidirectional with special print
enhancements.

• Print speed up to 20 characters per second.
• 10, 12, and 15 characters per inch.
• 256 character print buffer.
• 14.4" forms width.
• Print line width: 115, 138, and 172 characters.
• Serial RS-232-C and parallel Centronics interface

ports built-in.
• Built-in bidirectional forms tractor.
• Operating status control panel.

World's Finest
"Combination" Printer/Typewriter

List Price $799 SALE $489

• Superb computer printer combined with world's finest
electronic typewriter!

• Better than IBM selectric — used by world’s largest
corporations!

• Two machines in one — just a flick of the switch!
• Superb letter quality correspondence — home, office,

word processing!
• Extra large carriage — allow s 1 4 -1 /8 " paper usage!
• Drop in cassette ribbon — express lift off correction or

eraser up to 46 characters!
• Precision daisy wheel printing — many type styles!
• Pitch selector — 10,12, 15 CPS, Automatic relocate key!
• Automatic margin control and setting! Key in buffer!
• Electronic reliability, built in diagnostic test!
• Centronics parallel interface built-in

15 Day Free Trial - 90 Day Immediate Replacement Warranty

Add $17.50 lo r shipping, handling and insurance. Illinois residents please
add 6% tax. Add S35.00 for CANADA, PUERTO RICO. HAWAII, ALASKA,
APA-FPO orders. Canadian orders m u s t be in U.S. dollars.
WE DO NOT EXPORT TO OTHER COUNTRIES.

COM 64 — VIC-20 INTERFACE
APPLE INTERFACE

$59.00
$79.00

I
I

Enclose Cashiers Check. Money Order or Personal Check. Allow 14 clays |
delivery, 2 to 7 days tor phone orders, 1 day express mail! |

VISA - MASTERCARD - C.O.D.

No C.O.D. to Canada, APO-FPO

P R O T E C T O
i

____ i

(WE LOVE OUR CUSTOMERS)ENTERPRIZES
BOX S50, BARRINGTON, ILLINOIS 60010
Phon* 312/362-5244 to ordtr

intenLace clin ic -------------------------------
by Ralph Tenny

Richardson, Texas

We're continuing with the design of an output adapter for
the expansion port of a Radio Shack Color Computer. This
adapter will interconnect an Epson MX-80 printer, a
Commodore 64, a 32k Color Computer and a 64k Color
Computer. The two 64k computers will input to the 32k
Color Computer, which will serve as a printer buffer for
both the other machines. The interface card will plug into
the 32k machine and perform all the interface functions
needed except for power sensing. A smart power box will
sense when either computer is turned on, and power up
the 32k machine. This machine must then self-boot and
begin sensing when either computer sends data to be
printed.

Last month's column gave a set of specifications for the
four ports needed to accomplish the interfacing. These
ports are:
1. Parallel input from the Commodore. This input actually
comes from a The Connection serial-parallel converter
currently used with the Epson/Commodore combination.
This choice was made to insure continued compatibility
with all Commodore software currently being used.
2. Parallel output to the printer.
3. Serial input from the 64k Color Computer.

4. Serial output |unassigned).
Figure 1 shows the schematic of the interface board.

Ports 1 and 2 are implemented using a 6522 Versatile
Interface Adapter, which gives two 8-bit I/O ports, two
16-bit timers, automatic input/output handshake, and
synchronous serial communication. Each of the major
functions can issue an interrupt, and a separate interrupt
input is associated with each port.

The serial communications will be performed by a
6850 ACIA with switch-selectable baud rates of 300, 600,
1200 and 2400. This device is a programmable UART
(Universal Asynchronous Receiver/Transmitter) which
furnishes status output and input lines capable of
managing I/O handshaking. Both receiver and transmitter
sections can issue interrupts.

The specifications also call for a Busy signal capability
on both parallel ports. This is required to be sure of
compatibility with any printer or other parallel input or
output device which may be used to drive it. The Busy
signals will be programmed to be compatible with Epson
and similar printers. The output Busy signal (used on the
parallel input port] is held in a 74LS75 4-bit latch which
connects to the upper nibble on the CoCo data bus. The
Busy input from the parallel output port is gated onto the
data bus with a 74LS126 4-bit tri-state buffer. Both the
latch and the tri-state buffer have three unassigned
channels which could be used for any single-bit I/O
desired.

Baud rate generation was discussed in detail last time,
except that the baud selection switches were omitted from
the illustration. The corrected version and proper pin
connections are shown in Figure 1 (U1 and U2). These two
ICs form a programmable counter which resets itself each
time the output pattern conforms to the bit pattern
programmed into the switches.

The address decoding design was mentioned last time
also. The circuit shown and the description given last time
was incomplete. It also seems best to use three device
SELECT signals instead of four. The reason is that the
original SELECT signal for the parallel ports conflicts with
disk port address space. This design is not intended for use
with a disk, but could be if one of the several multi-pack
interface units was in use. So, the design shown in Figure 1
has three SELECT signals: $FF50 for the parallel ports,
$FF60 for the serial ports and $FF70 for the BUSY latch
and BUSY flag input.

In addition to the SELECT signals, certain other
decoding must be done. The 74LS75 quad latch is not a
bus-oriented device, so it has no SELECT input. All it has
is an active-high GATE pin which allows the output to
follow the input as long as GATE is high. The latch must
be forced to capture only that data written to $FF70.
The SELECT signal is active-low, so it must be inverted to
properly gate the latch. Also, the Read/Write* (R/W*)
signal must be used to ensure that only WRITE data is
captured, that is, when R/W* is low. One section of U5
pulses the GATE line high only when both SELECT and
R/W* are low.

The 74LS125 tri-state gate also has no SELECT, and
connects the input to the bus when the four (one for each
section) enable lines are high. Also, this must happen only
when the CPU is trying to read the data bus. So, a section
of U5 inverts R/W* to enable a third section of U5. When
both SELECT and (R/W*)* are low, the BUSY signal from
the printer is allowed onto the data bus.

Additional decoding is necessary for both the ACIA and
the VIA. Both have multiple registers, and REGISTER
SELECT (RS) inputs. The 6522 VIA has four RS inputs
which are connected to address lines AD0-AD3, so that 16
internal registers can be selected. Almost all these
registers can be read and written, just like normal memory
locations. The ACIA has four registers that occupy only
two memory addresses. Only one RS line is used [driven
by ADO), which means that there are two Read Only
registers and two Write Only registers. This causes extra
programming overhead, which will be discussed when we
have hardware ready to program!

Certain other circuit features and possibilities need to
be discussed. First, the interrupts generated on the ACIA
and VIA are shown connected to the IRQ* input. There
could be a conflict with some CoCo software, so if this
device is used as a general I/O board on an active
computer, this should be moved to the NMI* input. Both
the ACIA and VIA maintain an internal record of which
section caused an interrupt, so each needs to be polled to
determine which device caused the interrupt.

The VIA contains two counters which could have been
programmed to make the proper clock frequencies for the
ACIA. However, the normal hardware output for the
counters are I/O lines already dedicated to parallel I/O.
Another alternative exists. The counters will cause an
interrupt, so the interrupt service routine could force a
read of (for example) $FF30. The keyboard PIA in CoCo
will respond, but so will pin 13 of U2. This decode strobe

44 MICRO No. 75 - September 1984

could be used to toggle a flip-flop at twice the period of the
desired baud rate clock.

This timer-generated baud clock would only be
practical on a dedicated machine such as I will be using.
Also, it is advisable to put the VIA on NMI* and the ACIA
on IR Q *. Only the timer interrupt is time critical, but the
STROBE* line should have reasonably prompt response to
maintain high throughput for input data. The ACIA
buffers a second character and will assert BUSY if
necessary. However, the data throughput on even 2400
baud serial will not be greatly affected by a short BUSY
hold on transmission.

Two other loose ends: If you should desire to have full
eight-bit parallel input and output at $FF70, it is possible
to use an octal latch in place of U8 and an octal tri-state
buffer in place of U7. The required decoding is slightly
different, and will be shown in next m onth's column.

The second loose end is that I promised to examine the
bus loading in detail to decide if this interface board
needed to be buffered from the innards of CoCo. The
answer is yes; on two counts. First, the power loading
(drive current furnished by the 6809 CPU) on the address
lines is approaching the maximum specified value. This
loading will reduce the bus's ability to drive a capacitive
load at normal speed. In the second place, the capacitive
loading for the address bus is very close to, or exceeding,
the rated maximum. Therefore, this board does need
buffering. The ca lcu lation , circu itry and other
considerations will be presented next time also. gtfQQQ-

A N ESSENTIAL DISK G M EM O RY UTILITY
F o r t h e c o m m o d o r e 64 ™ s d r i v e

E A S Y T O U S E - H E L P - K E Y S T R O K E C O M M A N D S

■Disk T r a c k / S e c t o r Ed i to r
■Examine and mo d i f y d i sk s e c t o r d at a
• F i l e F o l l o w e r - m e m o r y f o r 151 s e c t o r s
• F a s t 1541 d i sk c om par e and e r r o r check

•D isp lay M e m o r y and Disk D a t a
in Hex, A S C I I o r Sc r ee n Code

• E d i t ful l page in Hex or A SC I I
• D i s a s s e m b le m e m o ry and disk da ta

• S ea rc h fo r s t r in g • Un -n ew Basic pgms
• Read drive me mory ' C o n v e r t H e x / D e c
• F re e s e c t o r map • Use DOS wedge
•R un M L r o u t i n e s - E x t e n s i v e manual

■ P r i n t e r screen dump (s e r i a l bus)
• F a s t machine code! Compat ib le w i t h

many Basic and m o n i t o r p rograms

D I S K E T T E C A N B E B A C K E D U p ! !

/■ _
Q u a n t u m S o f t w a r e
P.O. B O X 12716 , D e p t . 64

L A K E P A R K , F L 3 3 4 0 3

A L L FOR

$ 2 9 . 9 5
- U S P o s t P a id

T o O r d e r : S e n d c h e c k o r m o n e y o r d e r , U S d o l la r s
F lo r id a r e s id e n t s a d d 5°fo s a le s ta x
C O O a d d S 2 . C a l l 3 0 5 > 8 4 0 > 0 2 4 9

C o m m o d o r e 6 4 is a r e g is t e r e d t r a d e m a r k o f C o m m o d o re E le c t r o n ic s L t d .
P E E K A B Y T E is a t r a d e m a r k o f Q u a n tu m S o f t w a r e

No. 75 ■ September 1984 MICRO 45

FEATURES OF THE N ETW O R K ER

©

©

©

©

©
ALL

N ETM A S TER
S O FTW AR E

C O M M U N IC A T IO N S

Fcr S 1 ^9 we m clude with the N E T W O R K E R the
N E T M A S T E R C o m m un ica tions S o ftw are for a d ­
vanced users N E T M A S T E R will let you transfer
gam es com pute r graphics, p rogram s, sales re-
cods. docu m en ts - m lact. any App le flie of any size
- tc ano ther com puter. C 'rectiy from disk to disk,
w ithou t erro rs even threugn noisy phone lines

Complete Apple
Modem $129

Single-Slot 300 Baud Direct-Connect M o de m for
Apple II. I I + . lie and Franklin computers

DIRECT CONNECT - No acoustic coupling needed
Twc modular telephone ,ac*s - one tor phone - one
for line

SINGLt CHIP MODEM tor greater reiiab^ty

ON BOARD FIRMWARE ccnra’fis a te rm nai pro­
gram

ON 90ARD SERIAL .NTERFACE - no extra cards tc
buv Software selectable data tormat 7 or 8 da’a
bits one or two stoc bits, odd cr even santv full or
nai(duplex

300 BAUD software selectable tor 110 baud

SWITCH CONTROL tor answer originate s ts next tc
keyboard

CARR ER DETECr LED cives you nne status at a
g.ance

THIS PLUS

COMPLETE with NETWORKER SOFTWARE '0 give
you
• Text trapping ot entire display mic RAM memory
• Disk storage capab; i*v for a:! trapped re*?
• On screen menu and status -naxators
FREE SUBSCRIPTION TO THE SOURCE the popu-
iar dial jp information system
SOFTWARE COMPATIBILITY - with a1: common
Apple communication software

COMPATIBLE -vth botn -otary and tone phenes

FCC APPROVED - Made n JSA
ONE VEAR MANUFACTURER'S WARRANTY

N E T W O R K E R " IN CLUDES A
COM PLETE PACKAGE__________

• Modu'ar onone n ? : cro
• Net.v'nker software O'1 - d'SK ̂a a v to run
• Comp ete ns!rLiC' :Cn^ud-

JQB ENTERPRISES INC
P 0 Box 269

Ayer MA 0U32

For transfenng in form ation betw een com puters.
N E T M A S T E R s superb error checking and high
speed are an unbeatab le com b ina tion W ith a NET-
M A S T E R on each end. you can transfer in form a­
tion three to five tim es faste r than other com m u­
n ica tions packages like V is ite rm ' cr ASCII
E xpress Error free

Your best Ouy m m odem his tory The N e tw o rk e r , '
a plug-m s.ng le -slo t d irect conn ect m odem for the
Apple II lam iiy of com pute rs Send e lec tron ic mail
to a fnend or bus iness assoc ia te , use your schoo l s
com puter, access hundreds of com pu te r bu lle tin
boards or thousands of da ta oases for up-to-the-
m inute new s, sports, w eather, a irline, and stocK in ­
form ation

There s a b s o u te lv °o tn :n g e 'se to cuv You get
the m odem board com m u n 'ca t-o^ so ’ tw a re ana a
va luable subscrip tion tc A m e^ca .s c re r r 'e r - n w .
m ation service. TH E S O U R C E For S 1 29 t s an
unbeatab le value

This is the m odem that does ■(a 1, ana aoes 't fo r
less The A pp le C o m m un ica tions Card -s on boaro
so no other in terface is needed Its 300 oaud. me
m ost com m on ly used m odem sceed A rc >t c o n e s
com ple te w ith N E T W O R K E R C om m un cations
S o ftw are on an A p p ’e-com pai/bJe d/SK givmg vol-
fea tu res no m odem offers

Uke the a b iitv to 'Ock on -screen m essages mto
y o u ' Apple s R A M , and then m ove the n fo rm ation
onto a d isk for easy re fe rence and rev iew A te 'm '-
nal program that turns yo u r com oute r mto a com ­
m unica tions com m and center, w ith on -screen 'neip'
m enus, con tiguous uoda tes of m em ory usage ca r -
rier p resence, and com m u n ica tio n status

But N E T M A S T E R s not stuffy It will talk to those
o ther com m u n ica tio ns packages, but they d o n :
w ork as fast and they don t check e rro rs hke N E T ­
M A S T E R . And N E T M A S T E R doesn t only work
w ith the N E T W O R K E R m odem . Even ;f you
a lready have ano ther m odem fo r your Apple. N E T ­
M ASTER IS an ou ts ta nd in g va lue m c o m m u n i­
ca tions softw are, so we sell N E T M A S T E R by itse f
for $ 79 . N E T M A S T E R requ ires 48 k of RAM. one
disk drive, and the N E T W O R K E R or ano ther
m odem

W E EVEN GIVE YOU S O M E O N E TO
TALK TO!________________________________

Your purchase of the N E T W O R K E R w ith or w ithou t
N E TM A S T E R com es com p le te w-th a m em oersh ic
to TH E SO U R C E . w ith its norm al reg is tra tion fee
fuily w a 'ved THE S O U R C E will out a w ond of e le c ­
tronic in form ation anc com m u n ica tio n se rv ices at
your fingertips - instan tly E lectron ic ma=l and co m ­
puter con fe rencing C u rren t new s anc spo rts V a lu ­
able business and 'manc.ai ■n fo 'mat ic r Travel se r­
vices A w ealth o f in fo rm ation about persona l
com puting Even gam es. All fuily com pa tib le with
your equ ipm ent, and ready to use a* once

To Order
Call Toll Free
800-824-7888 Continental US

800-824-7919 Alaska and Hawaii
or anyw here m the world

916-929-9091
Ask tor operator # 592

MAIL ORDERS
PLEASE WRITE NUMBER OF ITEMS IN BOX

□ NETWORKER $ 129 □ NETMASTER $79

□ N ETWORKER/NETMASTER COMBO $ 179

C.O.D.
COD ORDERS ADD S3 OC

NAME

ADORESS_____________ __________ — - _______________

C IT Y _____________________ STATF_________ Z IP _____

M ass res idents add 5 % sales tax

Total E n c lo s e d _____________

r MASTERCARO I'/' VISA ~ CHECK r C O D

CARD NUMBER__________________________ EXPIRES________

Seno OmefS ana MjKr- C^eus Payable :o SIGNATURE .

JQB Enterprises Incorporated
P.O. BOX 269 AYER MASSACHUSETTS 01432

All Prices Quoted are tor Prepaid Orders — Prices Subject to Change W ithout Notice

i Credit Ca-d orders -nust be s.gned >

f a z t u n e ------------ :

........................ o o o
68000 Exception Processing
O O O ..

by Mike Rosing
Littleton, Colorado

iFir= ini---------iRr = = n a r = i Rr^=^=in i------= im

68000 uses exception processing to handle
software and hardware.

ir-ii in i---------ir i---------in r = ^ = in i-------------------------------

The 68000 microprocessor has many
attributes found on mini and main
frame com puters. These include
system and user modes, levels of
interrupts and error recovery from bad
s o ftw a re . C om p ared to 8 b it
microprocessors like the 6502 and
6809, the 68000 seems incredibly
complex.

Fortunately, the designers of the
68000 came up with a logical and
straight forward method of handling all
the complexities. The purpose of this
article is to describe "exception
processing" on the 68000. The
following parts will give examples of
how to take advantage of the 68000's
capabilities. Part 2 will cover software
exception processing in general; Part 3
w ill cover hardw are excep tio n
processing for the Sage II.

Status Register

Like other microprocessors, the 68000
has a status register. This holds the
carry, overflow, zero and negative bits
w h ich are found on a ll
m icroprocessors. The 68000 has
additional bits called trace, interrupt
mask and supervisor state. The bit
positions within the status register are
shown in Table 1.

Table 1 - Status Register

Bit Description

15 Trace Mode

14 Unused

13 Supervisor State

12-11 Unused

10-8 Interrupt Mask

7-5 Unused

U Extend (X bit)

3 Negative

2 Zero

1 Overflow

0 Carry

Bits 0-7 are called the user byte and
bits 8-15 are called the system byte.
The trace mode bit is useful for tracing
programs one instruction at a time.
The interrupt mask determines what
level of interrupt can be processed,
lower levels being ignored. We will get
into those bits later. For now the
supervisor state is most important.

If you have ever written a program
on an 8 bit machine which accessed
every byte in I/O space (like C000 to
CFFF on the Apple 2] you will
appreciate the separation of user state
and supervisor state on the 68000.
When the 68000 is in user state, it can
not access the system byte of the status
register. Nor can it access addresses
which are specified to be in supervisor
space.

Register A7 is also affected by the
supervisor state bit. If the bit is set A7
points to the supervisor stack pointer.
When the supervisor state bit is clear
A7 points to the user stack pointer.
Most systems keep these stacks in
different aresss of memory.

Exceptions

Once the 68000 goes to user state, it
can not change the supervisor state bit.
Unless an exception occurs, the 68000
will stay in user state. Since exceptions
can be forced by software, this is not a
problem. In fact, it ensures program
integrity since exceptions are all
outside the users normal needs.

Exceptions include interrupts,
hardware errors, software errors and
traps. Interrupts are caused by external
devices. Hardware errors are part of
external logic to the 68000. Software
errors include division by zero and

registers out of bounds. Traps are
sim ilar to a software generated
interrupt.

All 68000 exceptions go thru four
steps. Step one is to make a copy of the
status register. This ensures that after
the exception is handled the processor
can return to its original state. The
supervisor state bit is set putting the
processor in supervisor mode and sets
the stack pointer to the supervisor
stack.

Step two determines the vector
number of the exception. This vector is
a pointer to the code which the 68000
will execute to take care of the
exception. In some cases this number is
placed on the bus by an external device.
In other cases the vector number is
generated by the 68000.

In step three, the program counter is
pushed on the supervisor stack
followed by the status register copy
made in step one. If the exception is a
bus or address error, more information
will be pushed on the stack during this
step.

Step four sets the program counter
to the address found in step two and
normal execution resumes.

The address pointers used by the
68000 in step two are located at
addresses 0 thru $3FF. Every four bytes
represents a 32 bit pointer. This is
enough room for 256 pointers.
Multiplying the vector number by four
gives the address of the pointer. This in
turn has the address of the code to
execute.

The first 64 exception vectors have
specific meanings. For example, vector
number 5 is the divide by zero
exception. Vectors 48 thru 63 are
reserved for future use. Vectors 64 thru
255 are user definable.

No. 75 ■ September 1984 MICRO 47

Table 2 — Software Exception V ectors Table 3 — Hardware Exception V ectors

ictor Number Hex Address Description

3 C Address error

4 10 Illegal instruction

5 14 Zero divide

6 18 CHK instruction

7 1C TRAPV instruction

8 20 Privilege violation

9 24 Trace

10 28 Line 1010 emulator

11 2C Line 1111 emulator

32-47 80-BC TRAP instructions

Vector Number Hex Address Description

0 0 Reset

2 8 Bus error

15 3C Uninitialized interrupt

24 60 Spurious interrupt

25-31 64-7C Autovector interrupts

64-255 100-3 FC User interrupts

Software Exceptions

Table 2 shows the vector numbers and
locations for the software exceptions. A
short description of each is given here.
Actual examples will be given in Part 2
of this article.

Address error: Attempt was made to
reference word or long word address on
an odd boundary.

Illegal instruction: Attempt was
made to execute data. Patterns S4AFA,
$4AFB and $4AFC are "permanently
illegal'’ according to Motorola.

Zero divide: Attempt to divide by
zero using DIVU or DIVS instructions.

CHK in stru ctio n : The check
instruction is used to compare a
register against bounds. If not in proper
range the exception occurs.

TRAPV in stru ction : Exception
taken if overflow bit is set.

Privilege violation: Attempt was
made in user mode to change system
byte of status register.

Trace: If the trace bit is set in the
status register, the exception is taken
at the end of each instruction. This
pointer should be set to a debugger or
monitor.

Line 1010 and Line 1111 emulator:
68000 instructions which have $A or
$F as the first nibble will come here.
Motorola has a set of instructions
defined for the 68020 such as floating
point operations. The purpose of these
traps is to enable emulation of the
68020 by the 68000 for downward
compatability.

TRAP instructions: These can be
compared to software interrupts of 8 bit
microprocessors. There are 16 available

traps on the 68000.

Hardware Exceptions
Table 3 shows the hardware vectors. I

call them hardware because the support
chips placed around the 68000
determine how these vectors are
generated.

Bus error: When pin 22 goes low on
the 68000 this exception is processed.
Usually a system is designed so any
attempt to access memory which does
not exist will pull this low.

Uninitialized interrupt: If an MMU
(memory management unit) is attached
to the 68000 it can generate this vector.

Spurious interrupt: If bus error goes
low while an interrupt is being
processed this exception is taken.

Autovector interrupts: Designed for
use with 6800 peripherals. Almost all
systems built to date use these as the
only interrupts.

Listing 1

* initialize trap vector

lea trapzero,aO

move.l aO,$80

* execute software exception

trap #0

* go back to user mode

User interrupts: Space for interrupts
generated using "norm al" interrupt
processing. Very few manufacturers
use this because autovectoring is much
simpler.

To understand how to use the
68000 exception processing a few
examples are necessary. Part 2 of this
article will discuss software exceptions
which can be programmed on any
68000 system. Examples of hardware
exceptions will be given in Part 3.
These examples will be for a specific
computer but the main ideas are
transportable to other machines.

Part 2: Software Exceptions

In the first part of this article, the
68000 exception processing was
described in the theoretical sense. This

O

G
get trap address

put into vector location

o

o

move #0,sr clear all of status register

rts

* code executed by trap #0 instruction O

set supervisor bit in old status word

return from exception q

trapzero:bset #5,(sp)

rte

48 MICRO No. 75 ■ September 1984

section’s purpose is to create a better
understanding of the 68000 exception
processing activity by using concrete
examples.

When an exception occurs, the
68000 copies the status register, gets
the vector number, pushes the program
counter and previous status register on
the supervisor stack and jumps to the
address stored for this vector.

As an extremely simple example the
code in Listing 1 is actually very
powerful.

The first two lines in Listing 1
initialize vector number 32. The
sixteen trap instructions use vectors
32 + n where n is in the range zero to
fifteen. These two lines of code point
out the flexability of the 68000
exception system. The exception
processing code may be anywhere in
memory. It also points out how simple
it is to change exception vectors.

The trap instruction is the same as a
software interrupt instruction on a
6502 or 6809. The program counter and
status register are pushed onto the
supervisor stack. The number in the
instruction determines which vector is
chosen. Trap instructions are always
immediate mode. The trap number is
added to 32, then multiplied by 4. This
gives the address of the trap code. In
this case address $80 contains the
address of trapzero.

The address stored in location $80
is put into the program counter.
Execution now begins as usual. In this
case, bit five of the byte pointed to by
the supervisor stack is set. Remember
that this is a copy of the status register.
When the RTE is executed, the status
register is pulled from the stack. Bit
five happens to be the supervisor state
bit. When the program counter is
pulled from the stack we return to the
instruction following the trap #0.

We have now gone from user mode
to supervisor mode and the system is at
our command. Depending on the
operating sy stem , th is can be
extremely dangerous. After playing
with the system we may want to return
to user mode. This is done by clearing
the supervisor state bit in the status
register |sr).

If an attempt were made at
executing the move #0; sr in user mode
the privilege violation exception
(vector number 8] would occur. In this
case the program counter pushed on the
stack points to the instruction in
v io la t io n , n o t the in s tru c t io n

afterwards. This is slightly different
from the trap instruction.

Unimplemented instructions are
similar to the privilege violation. The
program counter pushed on the system
stack points to the offending code. This
is very useful as shown in the next
example.

Suppose we have an application
where 64 bits are required. As an
example we create an instruction
which has the following format:

Nibble Hex value Meaning

3 F Line 1111 emulator
2 0 Addition
1 0 ,2 ,4 ,6 Register
0 0 ,2 ,4 ,6 pair

N ib b le 3 fo rce s e x c e p tio n
processing on vector number 11
(address $2C). Nibble 2 can be used to

specify one of 16 instructions. For this
example only one is used. Nibble 1
specifies the source register pair. Since
we want to add 64 bits, we will need
two registers to hold the result. Zero
means registers dO and dl. Six means
register d6 and d7. We will take odd
numbers to be errors. Nibble 0 specifies
the destination register pair.

Listing 2 shows how an emulator
might be written. It first saves all the
data registers. Errors are just ignored.
Since any registers might be used, all
are saved into memory. The source and
destination register pairs are converted
to memory offsets. These memory
contents are then added. Notice that
the add with extend instruction is not
as flexable as the add instruction. This
is a minor drawback of the 68000.

In itialization of the em ulator
requires the first line of Listing 2. This
puts the address of the emulator into its
appropriate vector.

Listing 2

* in it ia liz e line 1111 emulator and c a ll i t for testing

O

move.1
move
move
.do.vr

rts

l in e l l l l ,$ 2 c
l,d2
2,d4
$f024

G
* emulator code for 64 b it addition of registers

l in e lU l :

savezone:

movem.l d0-d7/a0,savezone save data
move.1 2(sp),a0 point to instruction
move (a0),d0 get instruction
btst 0,d0 even destination?
bne error nope
btst 4,d0 even source?
bne error no again
and 7,d0 create
ls l 2,d0 destination o ffse t
move (a0),d l create
and $70,dl source
ls r 2 ,d l o ffse t
lea savezone, a0 point to data
move.1 4(a0,d l),d2 get lower source b its
add. 1 d2,4(a0,d0) add to lower destination b its
move.1 (a0,d l),d2 get high source b its
move.1 (a0,d0),d3 get high destination b its
addx.1 d2,d3 add with extend
move.1 d3,(a0,d0) reset destination
movem.1 savezone,d0-d7/a0 restore new data
add. 1 2,2(sp) point to next instruction
rte return from exception
.d s .l 9 space for 9 longwords
end

G

O

No. 75 • September 1984 MICRO 49

Execution is done by placing a word
in the middle of normal code. Most
assemblers require a construct shown
in Listing 2 as .dc.w $F024.

When normal execution gets to this
instruction exception processing takes
over. Since the high nibble is $F =
1111 (base 2), vector number eleven is
executed. This is just our emulator.
Notice that we added 2 bytes to the
program counter before returning from
the exception. This prevents an infinite
loop.

The trace exception is also a
software interrupt. Like the trap
in stru ction the program counter
pushed on the stack points to the next
instruction to be executed. This
happens because the trace exception
processing always occurs between
instructions. To make effective use of
the trace exception, one must know the
I/O port addresses for effic ien t
debugging.

Unlike the previous exceptions, the
address error can occur anytime an
effective address for a word or longword
is on an odd byte. This is usually in the
middle of an instruction execution.
Because of this, more information is
pushed on the supervisor stack during
the third step of exception processing.
This includes the instruction register
which holds the first word of the
offending instruction. The program
counter is usually two to four bytes
past this point. After the instruction
register comes the effective address
which is going to be odd. This is a
longword. The 1st word pushed on the
stack includes the function code, a
read/write bit and an instruction bit.

The function code corresponds to
the 3 bits FCO, FC1 and FC2 on the
68000. These determine user or
supervisor mode and program or data
space. The read/write bit tells whether
the access was during a read or write.
The instruction bit tells if the error
occured on an instruction. An address
error on an instruction will occur on a
line of code such as JMP (AO) where
AO is odd. The jump instruction itself
will be executed, but an address error
will occur as soon as AO is transferred
to the program counter.

To fully u tilize these error
e x c e p t io n s , one has to send
information to the programmer. This
usually involves input and output. The
final section of this article gives
examples of hardware interrupts for
I/O on a specific machine.

Part 3: Hardware Exceptions

The previous two parts of this article
have described 68000 exception
processing which was valid for any
system. This final portion is specific to
the Sage 2 because hardware exceptions
are caused by the physical wiring
connected to the 68000.

Hardware exceptions include reset,
interrupts and bus error. Each of these
are pfiysically wired to the 68000. On
the. Sage, the reset is performed by
powser on, or by pressing the reset
buttorTon the back of the machine.

The bus error line on the Sage will
be activated if the address strobe line is
not released within two microseconds.
Even the. slowest EPROM's are faster
than this. Usually one gets this error
when attempting to access an address
such as $4D696B65.

Interrupts are generated whenever
any of the interrupt lines go low. All
lines low indicates a level 7 interrupt.
All lines high indicates no interrupt.
The Sage is built with an LS148 priority
encoder attached to the interrupt lines.
This ensures that the 68000 sees only
the highest level interrupt yet to be
processed.

Reset Processing

During reset the 68000 looks for a
system stack pointer at vector number
0. This is located at address 000000. It
then reads the program counter from
vector number 1 at address 000004. On
the Sage these addresses are located in
RAM. How does the Sage turn on at a
known address?

When the reset line goes low a latch
is cleared which relocates the monitor
EPROMs to address 000000. The first
longword in the EPROM is $400 which
is the startup system stack. The next
longword is $FE003C which becomes
the program counter.

On the Sage, addressing the
EPROMs at addresses in the $FE0000
range relocates the EPROMs to
$FE0000. Thus, as soon as the program
counter address hits the bus, the
EPROMs are where they need to be and
the 68000 is initialized.

The only way to change the reset
system on the Sage is to burn new
EPROMs. For most users this should be
unnecessary.

Bus Error Processing

The bus error exception is exactly
the same as the address error described
in part two previously. It is processed
whenever the bus error line (pin 22]
goes low. To appreciate why this is
useful in two microseconds on the
Sage, remember that the 68000 is an
asychronous device. DTACK has to go
low before the address lines are
released. The processor enters wait
states until DTACK is returned. It is
perfectly happy to wait forever.

To avoid external circuitry which
computes whether an address is valid it
is much simpler to put on a timer. The
timer is run at the start of each bus
access and off when no bus access takes
place. As long as the timer never runs
out no bus error can occur. If no wait
states are ever used, a complete bus
access will require 250 nanoseconds
and a complete instruction will require
500 nanoseconds (or more). A single
wait state is 125 nanoseconds. Thus 16
wait states will go by before a bus error
occurs.

This discussion is specific to the
Sage only. Other systems will have
different methods of generating bus
errors. The access address is pushed on
the stack in any case, and this is
important to display for debugging
purposes.

Interrupt Processing

According to the 68000 manual,
normal interrupt processing requires
the interrupting device to put its vector
number on the lower data bus. This
number should be greater than 64. This
method allows for a total of 192
interrupts of any desired level. The
implementation is not so easy in
hardware. I don’t know of any 68000
based m achines w hich use this
capability.

The lack of "norm al" interrupts is
due to the 68000 having autovector
interrupts. By pulling the VPA line low
(pin 21) d uring an in te rru p t
acknowledge the 68000 looks at the
interrupt level input lines (pins 23-25).
This value is added to 24 to get the
exception vector.

Level 7 is used for RAM parity
errors. Levels 4, 5 and 6 are used for the
IEEE port, the terminal input port and
the floppy disk controller respectively.
The level one interrupts are processed
thru an Intel priority interrupt
controller for eight interrupts. All

50 MICRO No. 75 • September 1984

interrupts are autovectored and no
provision was made far "norm al”
interrupt processing as defined by
Motorola.

The eight level one interrupts
include two clock timers, the terminal
receive ready, the terminal and remote
transmit ready, a ring detect, printer
acknowledge and software generatable
inputs. In order to give an example of
interrupt processing on the 68000, we
will mask all but the terminal USART
generated interrupts.

The terminal interface chip is an
Intel 8251 A. This chip generates an
interrupt whenever a character is
received, as well as when it is ready to
transmit a character.

The code shown in Listing 3 is very
simple and should not be used for any
real application because it does not
save registers. It is a good example to
follow though. The first line of code
puts the processor into supervisor
mode |see page 48, Listing 1). The
mask on the next line prevents all
interrupts except the USART transmit
ready from entering the 8259. Next the
autovector addresses are set to the
interrupt codes. Registers are used
directly for this example and are
initialized. The 5 turns the USART on
for transmission and reception of data.
Finally, the stop instruction moves
$2000 into the status register and halts
processing.

When an interrupt occurs the
processor executes code starting at the
interrupt in question. If the USART is
ready to transmit the termout interrupt
will execute. If a character comes in
from the keyboard, the termin code
will execute. When the processor
returns from the interrupts the code
following the stop is executed.

To follow th is, suppose the
processor is halted. We press a key on
the terminal which is transmitted to
the USART. The USART causes
interrupt level 5 and the 68000
autovectors to termin. The character is
pulled from the USART, clearing the
interrupt. We store it into the input
buffer and bump the input buffer
pointer. After returning from the
interrupt, the 68000 checks to see if a
character came in.

A character was received so DO is
not equal to D l. The character is
moved to the output buffer and
p o in ters are in crem en te d . T h e
tran sm itter is enabled and the
processor halts again.

Since the transmitter is empty, it

generates a level one interrupt via the
8 25 9 . The lev el one in terru p t
autovectors to termout. Since we set it
up for only one possibility, the 8259
interrupt level is ignored. However, in
a real system we would then have to
pick the correct place to go to handle
the interrupt.

The character is moved from the
output buffer to the transmitter of the
USART. The get pointer is bumped and
the interrupt is ended.

At this point DO equals D l so we
return to the stop instruction. The
USART generates a transmitter empty
interrupt so we again vector to the
termout routine. At this point D2

equals D3 meaning the buffer is empty
(or overflowed!). The endout point
turns the transmitter enable off. Return
from interrupt again finds DO and D l
equal putting us at the stop instruction.

Even at 19.2K baud the trans­
mission of characters is 100 times
slower than the processor. This is only
an example to show how interrupts can
be used to run 1/O in background while
68000 processes data in foreground.

To summarize, remember that
exceptions all have vectors which point
to the code which handles them. Any
exception vector can be changed on any
computer to suit the needs of your
program.

Listing 3

* Assume baud rates set up and 8259 initialized

trap #0 go to supervisor mode

move.b #*11011111,$FFC043 mask off all interrupts
* except terminal transmit
transmit

move.1 #termout,$64 autovector 1

move.1 #termin,$74 autovector 5

lea inbufr,a0 pointer to input buffer

lea outbufr,al pointer to output buffer
fer

moveq #0,d0 set

moveq #0, dl up

moveq #0, d2 get and

moveq #0,d3 put pointers

on: move.b #5,#FFC073 enable transmission and

wait: stop #$2000

reception

wait for interrupt

amp. b d0,dl char came in?

beq wait no,went out

move.b (a0,d0),(al,d3) move from input to output

put

addi.b #l,d0 bump input get pointer

addi.b #l,<tf bump output put pointer

bra on enable transmission

* terminal output interrupt handler

termout: move.b #$C,$FFC04l set up 8259 for read

move.b $FFC04l,d4 get interrupt level

move.b #$20,$FFC04l clear interrupt

cmp. b d2,d3 hit end of

beq endout data to transmit?

move. b (al,d2),$FFC071 send out char

a.ddi.b #l,d2 bump get pointer

rte end of interrupt

endout: move.b #4,$FFC073 disable transmission

rte

* terminal input interrupt handler

termin: move.b $FFC0721,d4 get input char

move.b d4,(a0,dl) put into input buffer

addi.b #l,dl bump put pointer

cmp.b d0,dl hit get pointer?

tne endin yes, problems

move.b #0,$FFC073 so disable receive

endin: rte end of interrupt

©

o

©

©

AlCftO

No. 75 ■ September 1984 MICRO 51

L e a tu n c

o
Transferring dBase II Files

For Use With
W ords tar/Mailmerge

O
by Robert R. Carroll

Woodland Hills, California

O

Alter your dBase II files and use them
to produce personalized letter forms.

o
When using the popular programs
dBASE II and Wordstar/Mailmerge in
business, an opportunity often presents
itself where the two can be used
together to produce personalized form
letters. On the surface, it would
seem that this should be no problem;
h o w ev er, th e re e x is ts c e r ta in
peculiarities in each program that
forces a bit of thought as to how to
manipulate dBASE II files so that
Mailmerge sees just what it needs to
perform correctly with all types of
data. If you're not careful, you will
undoubtedly find form letters loaded
with unwanted spaces due to the
trailing blanks leftover from the fixed
field lengths of your data from dBASE
II' s .DBF (data] files. Or worse,
embedded commas in your data will
confuse Mailmerge to the point where
it won't track your data correctly. In
either case your letters will look far
from personal. This article will explore
a simple yet effective method for
flawlessly transferring dBASE II data
files for this use.

Of the many books and articles
written on these programs, none has
come up with a simple, easy-to-use
method of transferring the data files.
Typical schemes require writing an
external BASIC program or using a
word processor in a lengthy, hard-
to-remember procedure. dBASE II
provides all the functions necessary
to make the transfer complete without
resorting to difficult external measures.
Besides, many users of these programs
don't have the time, inclination or
programming knowledge to use them.

Now, let's look at a sample dBASE
II .DBF file called DATA.DBF which
contains mailing list data. Using
dBASE I I 's L IST S T R U C T U R E
command we see the following:

. USE DATA

. LIST STRUCTURE

STRUCTURE FOR FILE: A:DATA.DBF

NUMBER OF RECORDS: 00003

DATE OF LAST UPDATE: 03/15/84

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH

001 MRMRS C 004

002 FIRSTNAME c 015

003 LASTNAME c 015

004 COMPANY c 020

005 STREET c 020

006 CITY c 015

007 STATE c 004

008 ZIP c 006

** TOTAL ** 00098

We can see that each field has a
specific width determined by the user
at the time the database was created.
dBASE II will reserve this width for
the data when it is stored on disc,
whether the actual data fills up the
entire width or not. For example, a
LASTNAME of Deltawashington fills
up our field width of 15 characters
quite nicely. However, Stein leaves us
with 10 trailing blanks which will be
carried right into our form letter if we
don’t get rid of them somehow. Let's
enter some sample data to clarify the
example.

52 MICRO No. 75 ■ September 1984

Rec § MRMRS FIRSTNAME

00001 Mr. John H.

00002 Mrs. Joanne T.

00003 Ms. Toni J.

LASTNAME COMPANY

Stein Tate: and Sons

Houseman Melt;, Inc.

Deltawashington Lewis, Jones, and Co.

STREET CITY STATE ZIP

24 Lake Avenue Chicago IL 60606

970 Tulips Street New York NY 10019
11678 Riverside Dr. Burbank CA 91356

Now suppose we want to use this data to create a personalized form letter
called FORMLTR written using Wordstar/Mailmerge. The letter might read as
follows:

..FORMLTR

.op (to omit page number in printout)

.df DATATEXT.TXT (datafile created from dBASE II file DATA.DBF)

.rv MRMRS,FIRSTNAME,LASTNAME,COMPANY,STREET,CITY,STATE,ZIP

(tells Mailmerge to read values in specific order)

Dear &MRMRS& &LASTNAME&:

We regret to inform you that we cannot use &C0MPANY& in this

year's exhibition. Thank you for your interest.

Sincerely,

Clyde T. Newshandler

.pa(to begin new page)

If we don’t remove the trailing blanks we would get something like:

Dear Mr. Stein :

We regret to inform you that we cannot use Tate and Sons

this year's exhibition. Thank you for your interest.

The blanks in the text of the letter automatically tell the reader a computer
is talking at him. Also, Mailmerge must see its data separated by commas and
if a piece of data has a comma embedded in it, the entire piece must be enclosed
in quotes. For example, in our Rec # 00002, the COMPANY field contains
Melt, Inc. Mailmerge must see "M elt, Inc." so that it doesn't confuse the
embedded comma with a field separator and think that " In c ." is the next data
field. In this unfortunate occurrence, the tracking of all the data would be one
field off for the rest of the letters generated. Thus we might get:

Dear 10019 Ms.:

We regret to inform you that we cannot use Toni J. in this

û h A Pea
■ I

PERIPHERAL PRODUCTS
DOT MATRIX PRINTERS

80 CPS................................... $239
100 CPS................................. $259
120 CPS................................. $299
150 CPS................................. $349

WordStar__
Pro Pack__

$269
$369

Novation m
APPLE CAT II

300 Baud, Auto Answer,
Auto Dial, FREE Software

$199
NOVATION

1200 BAUD SPECIAL $529
1200 BAUD UPGRADE $339

DISK DRIVES
C oncorde CHI ..$189
Rana Elite I .. $229
Rana Elite II .. $369
Rana Elite III.. $475

la X A N
MODEL
115 12" Amber H i-Res............................ $129
210 12" Com posite-RG B....................... $289
400 12" RGB M ed -R es............................ $299
4 10 12" RGB Hi-Res $349
415 12" RGB Super Hi-Res $399

\1 2 6 2 9 N. Tatum Blvd.
^ Suite 212

Phoenix, AZ 85032

Call: 602-957-3619
$2 PHOIME REBATE
WITH ANY ORDER

SHIPPING CHARGES
0-100 $ 5

101-200 $ 8
201-300 $10
301- up $15

All prices are for cash or ch e ck —
Visa/M astercard ad d 3%

No. 75 ■ September 1984 MICRO 53

Not very professional. Luckily, Mailmerge will also accept an overkill
method of data separation: enclosing all data in quotes and separating them
with commas. This seems like it would be more work, but actually it is the
uniformity of this approach that makes this method work. And dBASE II does
all the work for us.

Now let's try the conventional method of creating text files from dBASE II
database files. While in dBASE II use the command:

. USE DATA

. COPY TO datatext DELIMITED WITH"

If we now examine the file DATATEXT.TXT (the .TXT extension is
automatically assigned by dBASE II) using Wordstar or a suitable command
like CP/M's TYPE, we'll see that all data is enclosed in quotes but with all the
trailing blacks carried right along like this:

"Mr. ", "John H. ", "Stein ", "Tate and Sons ",

"24 Lake Avenue "/'Chicago ", "IL ","60606 ", "Mrs.",

Well, that's no good. Let's try the other way of creating text files from dBASE II
files:

. USE DATA

. COPY TO datatext DELIMITED WITH,

Using this method, all data will be separated by commas and the trailing blanks
will be trimmed from each piece of data like this:

Mr.,John H.,Stein,Tate and Sons,24 Lake Avenue,Chicago,IL.60606,

Mrs.,Joanne T.,Houseman,Melt,Inc.,970 Tulips Street,New York,NY,

10019,Ms.,Toni J.,Deltawashington,Lewis, Jones, and Co.,11678

Riverside Dr.,Burbank,CA,91356

Unfortunately, embedded commas (like in Melt, Inc.) will cause incorrect
data tracking as we discussed earlier. Obviously this won't work with all data
types either.

Fortunately, there is a trickier way to create text files with dBASE II which
to be running at the same time. If theallows the full power of the program

command SET ALTERNATE TO
datatext.txt is used followed by SET
ALTERNATE ON, everything shown
on the screen will be sent to the file
datatext.txt. So, we can write a short
dBASE II program stripping away the
trailing blainks from the data using
the TRIM funciton and insert the
proper punctuation so Mailmerge gets
just what it wants. And, as an added
bonus, since the full power of dBASE
II is available, we can "filte r" the
usable data for our form letters much
more efficiently than we could by
simply using the COPY TO command
line.
For our example, the following
program could be written in dBASE II:

USE DATA

SET TALK OFF

SET RAW ON

SET ALTERNATE TO datatext.txt

SET ALTERNATE ON

DO WHILE .NOT. EOF

? 1 , T R I M (M R M R S)
M l 1 1

> >

9 1 , T R I M (F I R S T N A K E)
i mi r

> >

9 f , T R I M (L A S T N A M E)
1 ft t f

> >

9 I , T R I M (C O M P A N Y)
r it i f

> f

9 f , T R I M (S T R E E T) f fi f t
>

9 1 , T R I M (C I T Y)
1 M f 1

>

9 i , T R I M (S T A T E)
\ ft? I

>

9 r , T R I M (Z I P)
\ tt f f

> J

S K I P

E N D D O

S E T A L T E R N A T E O F F

The SET TALK OFF command
stops dBASE II from sending comments
to the screen as it makes calculations
or skips to the next record. SET RAW
ON eliminates single spaces between
fields which when defaulted to OFF is
the normal way dBASE II will LIST or
DISPLAY data. Keep in mind that
everything sent to the screen will
appear in the file datatext.txt.

Using the above dBASE II program
on our sample file data.dbf will yield
the following result automatically
given the filename datatext.txt by
dBASE II:

"Mr. "

"John H. ",

"Stein",

"Tate and Sons",

"24 Lake Avenue",

"Chicago",

"IL",

"60606",

"Mrs.",

"Joanne T.",

"Houseman",

"Melt, Inc.",

"970 Tulips Street",

"New York",

"NY",

"10019",

"Ms.",

"Toni J. ",

"Deltawashington",

"Lewis, Jones and Co",

"11678 Riverside Dr.",

"Burbank",

"CA",

"91356",

We can see that this format adheres
to all of Mailmerge's rules. Each piece
of data is separated by commas, trailing
blanks trimmed and enclosed in quotes
to protect embedded commas within
data fields.

An extra added bonus is that our
original dBASE II command file used to
create the datatext.txt file is easily
modified for use with other dBASE II
.DBF files by changing the field names
only via Wordstar or dBASE II's Modify
Command. The rest remains intact.

If you do any work at all with these
programs and form letters, you'll find
this method unbeatable.

JMCftO

54 MICRO No. 75 • September 1984

s
T

E

P

A Step-Trace facility with
a handy twist.

P
E

R

by Chester H. Page
Silver Spring, Maryland

Have you ever tried to debug a
machine-language program by step-
tracing it and found that you were
looking at a lot of instructions that you
had not written; This can be slow and
annoying.

The reason for this phenomenon is
obvious — all JSR calls to MONITOR
routines get traced through step-by-
step and this is distracting. I decided
that I wanted a step-trace program that
would display only my instructions,
i.e., any call to a monitor subroutine
would be handled as a single step
operation, no m atter how many
monitor steps were actually involved.

For b a ck g ro u n d , I stu d ied
Peterson's Step-Trace in MICRO on the

Apple, Volume 2. That program
mimics the S tep-Trace facility that was
in the old monitor ROM before the
days of AutoStart. He added a few
features such as interrupted trace. In
addition to the nuisance of dissecting
all monitor subroutines used in your
program, this Step-Trace program has a
problem with COUT — it hangs up.
My modification avoids this problem
because COUT is not dissected. In fact,
I can step-trace a program which calls
for printing a word on the screen, then
activating the printer and repeating the
print operation on paper! To do this
requires one special procedure: instead
of changing output hooks at $36/37
(which would cause a hang-up) the
hooks are changed directly in DOS at

SAA53/AA54.
For a final touch, my stepper

program is relocatable and can be
BRUN at any location that avoids the
program to be debugged.

T h e step -tracin g displays of
instructions and user registers are
placed on screen lines 0 to 19; user
COUT output appears in lines 22 and
23. Lines 20 and 21 maintain a gap for
better appearance. The right-hand end
of the gap lines is used for special
storage, so exh ib its a peculiar
combination of characters. The reason
for this u nconventional storage
lo c a tio n is to avoid p o ssib le
interference with user programs which
may use any available zero-page space

No. 75 ■ September 1984 MICRO 55

W i t h t h e s e t o o l s . . .
S-C M a c ro A ssem b ler - C om bined ed itor/assem ­

bler includes 2 9 com m ands and 2 0 d irectives, with

m acros, conditional assem bly, global rep lace, edit, and

m ore W ell-know n for ease-of-use and powerful features.

T housands o f users in o ver 3 0 countries and in every type

of industry attest to its speed, dependability , and user-

friendliness. Blends pow er, sim plicity, and perform ance to

provide the optim um capabilities to both beginning and

professional program m ers. W ith 100-p ag e m anual and

reference card, $92 . 50

C ro ss A s s e m b le r M o d u le s - O w ners of the S-C M acro

A ssem bler m ay add the ability to develop program s for

other system s. W e have m odules for m ost o f the popular

chips, at very reasonable prices:

6 8 0 0 0 1 / 0 2 .. $ 3 2 .5 0

6 8 0 5 ..$ 3 2 .5 0
6 8 0 9 .. $ 3 2 .5 0

6 8 0 0 0 ... $ 5 0 .0 0

Z - 8 0 ..$ 3 2 .5 0

P D P -1 1 .. $ 5 0 .0 0

8 0 4 8 ..$ 3 2 .5 0

8 0 5 1 ..$ 3 2 .5 0

8 0 8 0 / 8 5 .. $ 3 2 . 5 0

1 8 0 2 / 0 4 / 0 5 .. $ 3 2 .5 0

All of the cross assem blers retain the full pow er of the S-C

M acro A ssem bler. You can develop program s for burning

m io E P R O M s, transfer through a daia-hnk, or diTeci
execution by som e o f the plug-in pro cesso r cards now on

the m arket.

A pple A s s e m b ly L i n t - M onthly new sletter for assem bly

language program m ers, beginner or advanced. T utorial

articles; a d \a n c e d techniques; handy utility program s;

com m ented listings of code in D O S and A pple ROM s;

reviews of relevant new books, hardw are, software; and

m ore' S l 8 p e r y e a r (a d d $ 3 for first class postage in U S A .

C anada, M exico: add $ 1 3 postage for other countries).

S-C Software Corporation
2331 Gus Thomasson, Suite 125
Dallas, Texas 75228
(214) 324-2050

and may use the empty spaces in DOS
for data storage. This special storage
area is for (1) the split-screen window
data, (2) storage of output-hook data
and (3) storage of the XQT (execute
instruction) area. The old monitor
ROM uses S3C/44 for XQT, but
S3E/3F gets overwritten by GETNUM.
For this reason, the XQT area had to be
re-initialized before each user step. I
preferred to avoid this repetition
because I use a lengthy initialization
routine for relocatability. The problem
is in the two jump instructions that
follow the user command which was
copied to XQT. These two jumps are
for the normal no-branch return and
the special return when relative-jump
branches are taken. Since these jumps
are to routines within the stepper
program, they must be inserted by a
code-locating routine. I preferred
running this just once at the beginning
of the program.

STEPPER is conventional except for
one major departure. After a user
instruction is copied to XQT, it is
examined to see if it calls an address in
the monitor. If so, the instruction is

executed directly instead of being
simulated and stepped through. In the
case of an indirect jump, the indicated
jump address is examined for location.
If it is in the monitor, it is displayed
and the instruction executed.
To use STEPPER, load the program to
be debugged (at $nnnnj, enter HOME,
then BRUN STEPPER, AX at any
convenient location. Your program can
be stepped through by entering nnnnS,
followed by entering an S for each
successive step. Alternatively, nnnnT
will produce a continuous trace of
su ccessiv e steps w hich can be
interrupted by pressing any key and
restarted with T, or shifted to single
steps with S.

STEPPER can be tested on STEPPER
DEMO. STEPPER DEMO includes
subroutines, direct jumps and indirect
jumps, both within itself and to the
monitor and hook changing. To run,
BLOAD STEPPER DEM O, enter
HOME, BRUN STEPPER and enter
SOOT. The word "T E S T " should be
printed on the bottom screen line, then
the printer activated and "T E ST "
printed on paper.

Listing 1 Note: Mr. Page uses the S-C Macro FDDA- PRBYTE EQU $FDDA

Assembler , published by FDED- COUT EQU $FDED

O S-C Software Corporation FE00- BL1 EQU $FE00

FE75- A1PC EQU $FE75
a#*#*##******#**#***#**###** FF3A- BELL EQU $FF3A
* STEPPER * FF3F- RESTORE EQU $FF3F

O * CHET PAGE * FF4A- SAVE EQU $FF4A
a#****#*#*##*#**#*#*###**## FFA7- GETNUM EQU $FFA7

.OR $7000 FF58- RTRN EQU $FF58

.TA $800 FFBE- T0SUB EQU $FFBE
V * .TF STEPPER FFC5- ZMOD0 EQU $FFC5

0022- W EQU $22 FFC7- ZM0DE EQU $FFC7

002F- LENGTH EQU $2F FFCC- CHRTBL EQU $FFCC

O 0033- PROMPT EQU $33 *
0034- YSAV EQU $34 ^INITIALIZE WINDOW AREAS

003A- PCL EQU $3A *
003B- PCH EQU $3B 7000- A9 00 LDA #0

o 003C- INDPTR EQU $3C 7002- 85 22 STA W

0048- STATUS EQU $48 7004- 8D 72 06 STA UW+2

0100- STACK EQU $100 7007- A9 14 LDA #$14

o 066E- 0UTPRT EQU $66E 7009- 85 23 STA W+l

06EF- XQT EQU $6EF 700B- A9 13 LDA #$13

0670- UW EQU $670 700D- 85 25 STA W+3

0674- TW EQU $674 700F- A9 16 LDA #$16

o AA53- HOOK EQU $AA53 7011- 8D 70 06 STA UW

C000- KBRD EQU $C000 7014- A9 18 LDA #$18

F882- INSDS1 EQU $F882 7016- 8D 71 06 STA UW+1

A F8D0- INSTDSP EQU $F8D0 7019- A9 17 LDA #$17

F948- PRBLNK EQU $F948 701B- 8D 73 06 STA UW+3

F954- PCADJ2 EQU $F954 *
F956- PCADJ3 EQU $F956 70 IE- AD 53 AA LDA HOOK

© FAD7- REGDSP EQU $FAD7 7021- 8D 6E 06 STA 0UTPRT

FC22- VTAB EQU $FC22 7024- AD 54 AA LDA H00K+1

FD67- GETLNZ EQU $FD67 7027- 8D 6F 06 STA 0UTPRT+1

56 MICRO No. 75 ■ September 1984

* *RELAYS
* INITIALIZE XEQ RETURNS 70A4- 50 58 PCN3A1 BVC PCN3A2
* 70A6- 50 58 PCN2A1 BVC PCN2A2 A

702A- 20 58 FF JSR RTRN 70A8- 50 D2 STRT1 BVC STRT
702D- B8 CLV 70AA- AD 00 C0 TRACE LDA KBRD
702E- 50 07 BVC NB *STOP ON ANY KEY
7030- 20 4A FF NBRN JSR SAVE * WAIT FOR NEXT, REPEAT STEP o
7033- 38 SEC 70AD- 30 15 BMI AGIN
7034- B8 CLV 70AF- C6 34 DEC YSAV
*RELAY TO PCN3 LOCATE NBRN 70B1- 20 C7 FF ENT JSR ZMODE o
* AND INSERT JUMP 70B4- B8 CLV

7035- 50 6D BVC PCN3A1 70B5- 50 12 BVC STEP
7037- BA NB TSX *TRY MONITOR COMMANDS
7038- CA DEX *SEARCH MON CHARS o
7039- 18 CLC 70B7- A0 17 MCMD LDY #$17
703A- BD 00 01 LDA STACK,X 70B9- 88 CHRS DEY
703D- 69 04 ADC #4 70BA- 30 C0 BMI STRT
703 F- 8D F3 06 STA XQT+4 *CMP WITH TABLE, TRY AGAIN

u
7042- E8 INX * FOUND, PROCEED
7043- BD 00 01 LDA STACK,X 70BC- D9 CC FF CMP CHRTBL,Y
7046- 69 00 ADC #0 70BF- D0 F8 BNE CHRS o
7048- 8D F4 06 STA XQT+5 70C1- 20 BE FF JSR TOSUB
704B- A9 4C LDA #$4C 70C4- A4 34 AGIN LDY YSAV
704D- 8D F2 06 STA XQT+3 70C6- B8 CLV

7050- 8D F5 06 STA XQT+6 *GET NEXT COMMAND, ADR TO PC o

7053- 20 58 FF JSR RTRN * DISPLAY INSTRUCTION
7056- B8 CLV * RESET OUTPUT PORT

7057- 50 0F BVC BR 70C7- 50 Cl BVC NXTI o
7059- 18 BRAN CLC 70C9- 20 75 FE STEP JSR A1PC
705A- A0 01 LDY #1 70CC- 20 D0 F8 JSR INSTDSP
705C- B1 3A LDA (p c l),y 70CF- AD 6E 06 LDA OUTPRT
705E- 20 56 F9 JSR PCADJ3 70D2- 8D 53 AA STA HOOK o

7061- 85 3A STA PCL 70D5- AD 6F 06 LDA OUTPRT+1

7063- 98 TYA 70D8- 8D 54 AA STA HOOK+1
7064- 38 SEC 70DB- A2 02 LDX #2 A
7065- B8 CLV #NOP1S TO XEQ AREA
*RELAY TO PCN2 LOCATE BRAN 70DD- A9 EA XQIN LDA #$EA
* AND INSERT JUMP 70DF- 9D EF 06 STA XQT,X

7066- 50 3E BVC PCN2A1 70E2- CA DEX o
7068- BA BR TSX 70E3- D0 F8 BNE XQIN

7069- CA DEX %

706A- 18 CLC * COPY USER COMMAND o706B- BD LDA STACK,X £

706E- 69 04 ADC #4 70E5- A2 00 LDX #0

7070- 8D F6 06 STA XQT+7 70E7- AI 3A LDA (PCL,X)

7073- E8 INX 70E9- D0 17 BNE NOTBRK o
7074- BD 00 01 LDA STACK,X #SET SCREEN OUTPUT

7077- 69 00 ADC #0 70EB- A9 F0 LDA #$F0

7079- 8D F7 06 STA XQT+8 70ED- 8D 53 AA STA HOOK
* 70F0- A9 FD LDA #$FD oV
707C- D8 STRT CLD 70F2- 8D 54 AA STA HOOK+1

707D- 20 3A FF JSR BELL 70F5- 20 82 F8 JSR INSDS1

7080- A9

7082- 85

2A

33

CONT LDA

STA

#$2A

PROMPT

70F8- 20 D7 FA

70FB- B8

JSR REGDSP

CLV o
7084- 20 67 FD JSR GETLNZ *RELAY

7087- 20 C7 FF JSR ZMODE 70FC- 50 AA BVC STRT1

708A- 20 A7 FF NXTI JSR GETNUM 70FE- 50 7B PCN3A2 BVC PCN3A3 o
708D- 84 34 STY YSAV 7100- 50 7B PCN2A2 BVC PCN2A3
*TC TT CTTTD' TC TT TDAPT?1? %

* IS IT < CR> ? * EXAMINE OPCODE

708F- C9 EC CMP #$EC £ o
7091- F0 IE BEQ ENT 7102- A4 2F NOTBRK LDY LENGTH

7093- C9 ED CMP #$ED 7104- C9 20 CMP #$20

7095- F0 13 BEQ TRACE 7106- D0 0A BNE TRYJMP o
7097- C9 C6 CMP #$C6 #IT IS JSR

7099- D0 1C BNE MCMD *IS IT IN MONITOR?

709B- 20 C5 FF JSR ZMOD0 *YES, SO EXECUTE, NO, SIMULATE

709E- 20 00 FE JSR BL1 7108- B1 3A LDA (PCL),Y o
70A1- B8 CLV 710A- C9 F8 CMP #$F8

70A2- 50 DC BVC CONT 710C- B0 71 BCS EX1

No. 75 • September 1984 MICRO 57

710E- 90 73 BCC SJSR1 7193- 49 14 EOR #$14
7110- 50 B2 AGIN2 BVC AGIN 7195- C9 04 CMP #4
7112- C9 4C TRYJMP CMP #$4C #SET UP BRANCH RETURN TO BRAN o
7114- D0 08 BNE TRYIND 7197- F0 02 BEQ XQ2
*IT IS JMP 7199- B1 3A XQ1 LDA (PCL),Y
*IS IT TO MONITOR? 719B- 99 EF 06 XQ2 STA XQT,Y
*YES, EXECUTE NO, SIMULATE 719E- 88 DEY o
7116- B1 3A LDA (PCL),Y 719F- 10 F8 BPL XQ1

7118- C9 F8 CMP #$F8 *RESTORE USER REGISTERS, EXEC USER CMD
711A- B0 69

711C- 90 69

BCS EX2

BCC SJMP
71A1- 20 3F FF

71A4- 4C EF 06

JSR

JMP

RESTORE

XQT
o

711E- C9 6C TRYIND CMP #$6C ^SIMULATE RTI
7120- D0 67 BNE TRYRTS 71A7- 18 SRTI CLC
*INDIRECT JUMP 71A8- 68 PLA o
7122- B1 3A LDA (PCL),Y 71A9- 85 48 STA STATUS
7124- 85 3D STA INDPTR+1 ^SIMULATE RTS
7126- 88 DEY 71AB- 68 SRTS PLA o7127- B1 3A LDA (PCL),Y 71AC- 85 3A STA PCL

7129- 85 3C STA INDPTR 71AE- 68 PLA

712B- B1 3C LDA (INDPTR),Y 71AF- 85 3B PCN2 STA PCH
*IS IT TO MONITOR? SIMULATE 71B1- 20 54 F9 PCN3 JSR PCADJ2 o
712D- C9 F8 CMP #$F8 7IB4- 84 3B STY PCH
712F- 90 45 BCC SIND1 71B6- 18 CLC
* 71B7- 90 18 BCC NEWP

* DISPLAY MONITOR ADDRESS *RELAYS o
* 71B9- 50 43 USER1 BVC USER4

7131- AD 53 AA LDA HOOK 7IBB- 50 36 USER2 BVC USER3
7134- 8D 6E 06 STA OUTPRT ^SIMULATE JSR r \
7137- AD 54 AA LDA HOOK+1 ^SIMULATE RETURN TO STACK

713A- 8D 6F 06 STA OUTPRT+1 71BD- 18 SJSR CLC

713D- A9 F0 LDA #$F0 71BE- 20 54 F9 JSR PCADJ2

713F- 8D 53 AA STA HOOK 71C1- AA TAX o
7142- A9 FD LDA #$FD 71C2- 98 TYA

7144- 8D 54 AA STA HOOK+1 71C3- 48 PHA

7147- A9 8D LDA #$8D 71C4- 8A TXA
o7149- 20 ED FD JSR COUT 71C5- 48 PHA

714C- 20 48 F9 JSR PRBLNK 71C6- A0 02 LDY #2

7l4F- 20 48 F9 JSR PRBLNK ^SIMULATE JUMP

7152- 20 48 F9 JSR PRBLNK 71C8- 18 SJMP CLC o
7155- A9 A4 LDA #$A4 ^SIMULATE INDIRECT JUMP

7157- 20 ED FD JSR COUT 71C9- B1 3A SIND LDA (PCL),Y

715A- B1 3C LDA (INDPTR),Y 71CB- AA TAX

715C- 20 DA FD JSR PRBYTE 71CC- 88 DEY o
715F- 88 DEY 71CD- B1 3A LDA (PCL),Y

7160- B1 3C LDA (INDPTR),Y 71CF- 86 3B STX PCH

7162- 20 DA FD JSR PRBYTE 71D1- 85 3A NEWP STA PCL o7165- AD 6E 06 LDA OUTPRT 71D3- B0 F3 BCS SJMP

7168- 8D 53 AA STA HOOK 71D5- AD 53 AA NEWP2 LDA HOOK

716B- AD 6F 06 LDA OUTPRT+1 71D8- 8D 6E 06 STA OUTPRT

716E- 8D 54 AA STA HOOK+1 71DB- AD 54 AA LDA HOOK+1 o
* 7IDE- 8D 6F 06 STA OUTPRT+1

7171- A4 2F LDY LENGTH 71E1- A9 F0 LDA #$F0

7173- B8 CLV 71E3- 8D 53 AA STA HOOK
o7174- 50 43 BVC USER1 71E6- A9 FD LDA #$FD

7176- A4 2F SIND1 LDY LENGTH 71E8- 8D 54 AA STA HOOK+1

7178- 38 SEC 71EB- 20 D7 FA JSR REGDSP

7179- B0 4E BCS SIND 71EE- B8 CLV o
#RELAYS *RELAY TO AGIN

717B- 50 34 PCN3A3 BVC PCN3 71EF- 50 90 BVC AGIN1

717D- 50 30 PCN2A3 BVC PCN2 71F1- 50 E2 NEWP1 BVC NEWP2

717F- B0 3A EX1 BCS USER2 * o
7181- 50 8D AGIN1 BVC AGIN2 *EXECUTE MONITOR ROUTINE

7183- 90 38 SJSR1 BCC SJSR *

7185- B0 32 EX2 BCS USER1 *IF MONITOR SUBROUTINE SET UP RETURN o
7187- 90 3F SJMP1 BCC SJMP *AND CONVERT JSR TO JMP

7189- C9 60 TRYRTS CMP #$60 71F3- 18 USER3 CLC

718B- F0 IE BEQ SRTS 71F4- 20 54 F9 JSR PCADJ2

718D- C9 40 CMP #$40 71F7- AA TAX o
718F- F0 16 BEQ SRTI 71F8- 98 TYA

7191- 29 IF AND #$1F 71F9- 48 PHA

58 MICRO No. 75 • September 1984

o

o

o

o

o

71FA- 8A TXA
71FB- 48 PHA
71FC- A0 02 LDY #.2
♦EXECUTE MONITOR ROUTINE

71FE- A9 60 USER4 LDA #$60
7200- 8D F2 06 STA XQT+3
7203- B1 3A .1 LDA (PCL),Y

7205- 99 EF 06 STA XQT.Y
7208- 88 DEY

7209- 10 F8 BPL . 1
♦IF JSR, CONVERT TO JMP

720B- C9 20 CMP #$20
720D- D0 06 BNE .2
720F- A9 4C LDA #$4C
7211- C8 INY

7212- 99 EF 06 STA XQT.Y

7215- A2 03 .2 LDX #3
♦SAVE TRACE WINDOW DATA

7217- B5 22 SVT LDA w,x
7219- 9D 74 06 STA TW,X
721C- CA DEX
72ID- 10 F8 BPL SVT
72 IF- A2 03 LDX #3
♦LOAD USER-WINDOW DATA

7221- BD 70 06 LDU LDA UW,X
7224- 95 22 STA w,x
7226- CA DEX

7227- 10 F8 BPL LDU

7229- 20 22 FC JSR VTAB
722C- 20 3F FF JSR RESTORE
722F- 20 EF 06 JSR XQT
7232- 20 4A FF JSR SAVE

7235- A2 03 LDX #3
♦SAVE USER-WINDOW DATA

7237- B5 22 SVU LDA w,x
7 2 3 9- 9D 70 06 STA uw,x
723C- CA DEX

723D- 10 F8 BPL SVU

723 F- A2 03 LDX #3
♦LOAD TRACE-WINDOW DATA
7241- BD 74 06 LDT LDA TW,X
7244- 95 22 STA w,x
7246- CA DEX

7247- 10 F8 BPL LDT

7249- A9 4C LDA #$4C
724B- 8D F2 06 STA XQT+3
♦RECOVER RETURN ADDRESS
724E- 68 PLA

724F- 85 3A STA PCL

7251- 68 PLA

7252- 85 3B STA PCH

7254- E6 3A INC PCL
7256- D0 02 BNE .2
7258- E6 3B INC PCH

725A- A2 00 .2 LDX #0
725C- B8 CLV

♦RELAY TO NEWP2

725D- 50 92 BVC NEWP1

©

q For those who aren't using an S-C Assembler, to the right
are definitions of those commands which are unique to
this assembler. The following are from the 'S-C Macro
Assembler’ by Bob Sander-Cederlof, copyright 1982, S-C

® Software Corporation.

Listing 2

.DA

o 1000 ft#################£
1010 ♦ STEPPER DEMO ♦

1020 **#******#*##*#*#*
1030 .OR $300
1040 .TA $800

1050 .TF STEPPER DEMO

FDED- 1060 COUT • EQ $FDED

0006— 1070 PTR .EQ $6

0300- 20 11 03 1080 JSR TEXT

0303- A9 00 1090 LDA #0

0305- 8D 53 AA 1100 STA $AA53
0308- A9 Cl 1110 LDA #$C1

030A- 8D 54 AA 1120 STA $AA54

030D- 20 11 03 1130 JSR TEXT

0310- 00 1140 BRK

0 3 H - A9 8D 1150 TEXT LDA #$8D

0313- 20 ED FD 1160 JSR COUT

0316- A9 D4 1170 LDA #$D4

0318- 20 44 03 1180 JSR TI

03 IB- A9 C5 1190 LDA #$C5
031D- 20 47 03 1200 JSR T2

0320- A9 D3 1210 LDA #$D3

0322- 20 4F 03 1220 JSR T5

0325- 20 58 FF 1230 JSR $FF58

0328- 20 54 03 1240 JSR T7

032B- A2 4l 1250 LDX #WORD

032D- A0 03 1260 LDY /WORD

032F- 86 06 1270 STX PTR

0331- 84 07 1280 STY PTR+1

0333- A0 00 1290 LDY #0

0335- B1 06 1300 PRINT LDA (PTR),Y

0337- F0 07 1310 BEQ DONE

0339- 20 ED FD 1320 JSR COUT

033C- C8 1330 INY

033D- 4C 35 03 1340 JMP PRINT

0340- 60 1350 DONE RTS

0341- D4 8D 00 1360 WORD .HS D48D00

0344- 4C ED FD 1370 TI JMP COUT

0347- 6C 4a 03 1380 T2 JMP (T3)
034a- 4C 1390 T3 .DA #T4

034B- 03 1400 • DA /T4

034C- 4C 3C FF 1410 T4 JMP $FF3C

034F- 6C 52 03 1420 T5 JMP (T6)

0352- ED FD 1430 T6 .HS EDFD

0354- 6C 57 03 1440 T7 JMP (T8)

0357- 58 FF 1450 T8 .HS 58FF

DAta
s constants 01• variables in your

program...The value
or two bytes, is
tion. If a label is
address where the

of the expression, as one
stored at the current loca-
present, it is defined as the
first byte of data is stored.'

.HS Hex String
'Converts a string of hex digits (hhh...h)
to binary, two digits per byte, and stores
them starting at the current location. If a
label is present, it is defined as the address
where the first byte is stored.'

.TF Target File
'Causes the object code generated to be stored
on a binary file, rather than in memory.’

.TA Target Address
'Sets the target address at w hich the object-

code will be stored during assembly.'

.OR Origin
'Sets the program origin and the target address
to the value of the expression. Program ori­
gin is the address at which the object program
will be executed.’ JMCRO

No. 75 - September 1984 MICRO 59

Mastering Your VIC-20
Mastering Your Commodore 64

The 8 program s, “ run-ready” on d isk (C-64) or
tape (VIC-20) and expla ined in the 160-192 page
book, each dem onstra te im portan t concep ts of
BASIC w h ile provid ing usefu l, en joyab le softw are.
Program s include:
• Player — com pose songs from your keyboard,

save, load and ed it fo r perfect m usic
• M icroC alc — d isp lay ca lcu la tion program that

make even com plex opera tions easy
• M aster — a one or tw o person guessing game
• C lock — characte r g raph ics for a d ig ita l c lock

VIC-20 w ith tape & book just $19.95
C-64 w ith d isk & book (avail. Sept.) just $19.95

Look for us at the
International Software Show

Toronto, September 20-23

MICROCalc for C-64
This on-screen ca lcu la to r com es w ith d iske tte and
48-page m anual o ffe ring a w ide varie ty o f useful
screens, and a great way to learn BASIC expressions
if you don ’t a lready know them.
• U n lim ited ca lcu la tion length & com p lex ity
• Screens can be linked and saved on disk/cassette
• Build a library o f custom ized screens
• Provide fo rm atted p rin te r ou tpu t
D iskette & 48-page m anual just $29.95

For the Freshest Books, Buy Direct!
• No prehandled books w ith bent corners
• Books com e d irect to your door
• No tim e wasted searching store to store
• 24 hours from order receipt to sh ipm ent
• No sh ipp ing /hand ling charges
• No sales tax (except 5% MA res.)
• Check, MO, VISA/MC accepted (prepaid only)

The Computerist Bookcart
P.O. Box 6502, Chelmsford, MA 01824

For faster service, phone: 6 1 7 /2 5 6 -3 6 4 9 .

A eatcine

Time-Series Forecasting

o by Brian Flynn
Vienna, Virginia

C

o

A program 1:o predict the future.

Requirements: Apple II, Commodore
64, Atari, or CoCo with Flex

Prophets and pundits since time
immemorial have tried to peer into that
murky and mysterious region of
shifting shadows and dancing dreams
called the future. These seers and
soothsayers have plied their fortune-
telling trade using every sort of
contrivance imaginable: everything
from shooting stars and playing cards to
chicken entrails and crystal balls.

Today you can join this elite group
of mystics and Merlins by using the
t im e -se r ie s fo reca s tin g program
presented here. It's written in a
‘generic BASIC' and runs nicely on a
machine with minimum memory. And
while the forecasts of yesteryear were
often as illusory as a maintenance-free
automobile or a meek and mild
K lin g o n , th e m ic ro c o m p u te r
projections can have a sound scientific
basis.

After first explaining what a "tim e
series" is, we'll show you how to use

the microcomputer program to predict
future interest rates. W e'll describe the
program's forecasting techniques

1. Least-Squares Trend
2. Semi-Averages
3. Percent Changes
4. First Differences, and
5. Past Averaj;es

and give you hints on when to use each.

W h at's a T im e Series?

A time series is a group of observations
on a variable, in chronological order, at
a set frequency. Monthly sales, weekly
income, annual gross national product
and the number of Americans flying to
London every August are examples.

The adjective "tim e '' means that
our observations are tallied at equal
calendar intervals. And the noun
"series" means that we have more
than one data point. Flence, a "tim e
series" records a variable's past and
time-series forecasting projects its
future using historical observations.

As the sage says, the past is
prologue, or so we hope.

Real-W orld Exam ple:
W hither Interest Rates?

The future level of interest rates in the
econom y concerns m ost of us,
borrowers and lenders alike. If we're
thinking about financing a new house
or car, for example, and if interest rates
are falling, then delay will save us
dollars. But we’re better off buying now
if interest rates are rising.

Suppose the dogs of debt are
muzzled for a change, however, and
that we strut proudly to the teller’s
window to lend instead of to borrow.
Cash in hand and nirvana in mind, we
decide to plop down $5K for a money-
m a rk e t c e r t i f ic a t e m a tu rin g
somewhere between 3 months and 2
1/2 years. If interest rates are headed
downward, locking in a relatively high
rate now for as long as possible (2 1/2
years) is sound strategy. With rising
interest rates, on the other hand, we're
better off with a shorter maturity.

There's only one catch to this nice
"buy-low sell-high" kind of advice.
How do we know if future interest rates
will rise or fall? To try and find out,

No. 75 ■ September 1984 MICRO 61

let’s use the time-series forecasting
routine. Our first step is to gather
historical data, with our bountiful
harvest shown in Table 1. This
sequence of numbers qualifies as a time

Table 1

Interest Rates on
3-Month Treasury Bills

Year: Month Percent

1982: 8 8.68

9 7.92

10 7.71

11 8.07

12 7.94

1983: 1 7.86

2 8.11

3 8.35

4 8.21

5 8.19

6 8.79

7 9.08

8 9.34

9 9.00

10 8.64

11 8.76

12 9.00

1984: 1 8.90

2 9.09

3 9.52

4 9.69

P e r c e n t

10.0 T

9 5

9 . 0

7 5

series: the observations are in
chronological order (August 1982 to
April 1984) at a set frequency
(monthly).

After keying our figures into the
computer, with the program prompting
us at every turn, the microcomputer
indicates that future interest rates can
be predicted using any of these
extrapolation techniques: (1) Least-
Squares Trend, (2) Semi-Averages, (3)
Percent Changes, (4) First Differences,
and (5) Past Averages.

We can predict as far into the future
as we care or dare, using one method
after another, until all reasonable
alternatives are exhausted.

We now explain each technique in
detail.

Least-Slquares Trend

In Least-Squares Trend the micro­
computer forecasts by extrapolating an
historically fitted regression line into
the future. As Figure 1 shows, the
technique satisfies an urge that almost
all of us have had: to draw a line
through a plot of points to best reflect
the apparent trend.

The microcomputer estimates the
line using a statistical technique called
‘ ‘ord inary le a st s q u a r e s " . Our
dependent variable, interest rates, is
regressed on a lone explanatory
variable, " tim e” . Observations on the
latter are generated internally by the
program, with August 1982 corres­

L e a s t - S q u a r e s T r e n d
3 - M o n t h T r e a s u r y B i l l R a te V e r s u s T i m e

8 2 : 8 9 10 11 12 8 3 : 1 2 3 4 5 6 7
-4-

10 11 12 8 4 : 1 2

ponding to 1 (the first time period],
September 1982 corresponding to 2 (the
second time period), and so on. April
1984 corresponds to 21 since we have
21 months worth of data.

Technically, the microcomputer
estimates our linear equation so that
the sum of squared deviations of our
observations from the line is as small
as possible,- hence the term "least
squares” .

Taking a practical example, let’s
forecast interest rates in January 1985.
We ask the microcomputer to project
nine months ahead, from May 1984. It
responds with the forecasts of Table 2.

FORECASTS

METHOD: LEAST-SQUARES TREND

PERIOD (22) = 9.46

PERIOD (23) = 9.53

PERIOD (24) = 9.61

PERIOD (25) = 9.69

PERIOD (26) = 9.77

PERIOD (27) = 9.84

PERIOD (28) = 9.92

PERIOD (29) = 10

PERIOD (30) = 10.07

FORECASTS

METHOD: SEMI-AVERAGES

Figure 1

PERIOD (22) = 9.62

PERIOD (23) = 9.72

PERIOD (24) - 9.81

PERIOD (25) = 9.9

PERIOD (26) = 9.99

PERIOD (27) = 10.08

PERIOD (28) = 10.18

PERIOD (29) = 10.27

PERIOD (30) = 10.36

FORECASTS

METHOD: PERCENT CHANGES

PERIOD (22) = 9.86

PERIOD (23) = 10.03

PERIOD (24) = 10.21

PERIOD (25) = 10.4

PERIOD (26) = 10.58

PERIOD (27) = 10.77

PERIOD (28) = 10.96

PERIOD (29) = 11.16

PERIOD 30) = 11.36

62 MICRO No. 75 ■ September 1984

FORECASTS
M e th o d o f S e m i-A v era g es

Percent
10.01

9 .5"

9 .0 -

8.0-

S tep 1

7 .5 -

H— I— I—|— |— |— |— |— |— 1_ -I--- 1— I— 1—4— I— I— I— I— 1-
81:8 9 10 11 12 83:1 2 3 4 5 6 7 8 9 10 11 12 84:1 2 3 4

In the first step the microcomputer divides our time series
into two roughly equal parts, and computes the mean of
each [8.1% and 9.1% respectively.)

Percent
S tep 2

In the second step the microcomputer fits a line through
the two means. The points on the line represent our
forecasts.

Figure 2

METHOD: FIRST DIFFERENCES

PERIOD (22) = 9.86

PERIOD (23) = 10.03
PERIOD (24) = 10.2

PERIOD (25) = 10.37

PERIOD (26) = 10.54

PERIOD (27) = 10.71

PERIOD (28) = 10.88

PERIOD (29) = 11.05

PERIOD (30) = 11.22

FORECASTS

METHOD: PAST AVERAGES OF 20

PERIOD (22) = 9.75

PERIOD (23) = 9.81

PERIOD (24) = 9.87

PERIOD (25) = 9.93
PERIOD (26) = 9.99

PERIOD (27) = 10.05
PERIOD (28) = 10.11

PERIOD (29) = 10.18

PERIOD (30) = 10.24

FORECASTS

METHOD: PAST AVERAGES OF 20

PERIOD (22) = 9.74

PERIOD (23) = 9.79

PERIOD (24) = 9.84

PERIOD (25) = 9.89

PERIOD (26) = 9.94

PERIOD (27) = 9.99

PERIOD (28) = 10.04

PERIOD (29) = 10.09

PERIOD (30) = 10.14

A big advantage of Least-Squares
Trend over traditional regression
routines is that we know future values
of the explanatory' variable (“ tim e”)
with absolute certainty. With the latter
technique we don't. Using the rate of
inflation instead of "tim e” to predict
interest rates, for example, leaves us
the problem of estimating the price
level in January 1985 before we can run
our model.

Semi-Averages

Namely, the microcomputer divides
our time series into two roughly equal
parts and computes the mean of each.
Then it fits a line through the two

Percent Changes

The Percent Change routine works as
its name implies. The microcomputer
first computes the percent delta
between the last two values of our time
series: 100 * f 9 .69 — 9 .52)79 .52 =

points, with values on the line
The method of Semi-Averages is representing our forecasts. Figure 2
somewhat akin to Least-Squares Trend, details the process.

No. 75 • September 1984 MICRO 63

1.79%, or 1.0179 in index form. Then
it applies this factor to future periods.

Hence, the predicted interest rate in
May 1984 is 9 .69*1.0179 = 9.86% .

The technique of Percent Changes
is usually best suited to short-term
forecasts, say up to two or three periods
ahead and for cases where observations
are highly correlated from one period to
another. Examples include using
monthly data to forecast next quarter's
Dow Jones Average or foreign trade
deficit.

As a general rule, leave long-term
prognostications to Least-Squares
Trend or to the method of Semi-
Averages. An exception is when you
strongly believe that very recent data
will heavily influence the future. An
example might be a sharp jump in the
inflation rate which in turn fuels the
fear of future price hikes and, hence,
becomes a self-fulfilling prophecy.

First Differences

The First Difference routine works a lot
like its Percent Change colleague.
Namely, the difference instead of
percent change between the last two
values of the time series is used as the
factor to forecast future values.

For our data, this difference is
9.69 — 9.52 = 0.17. Hence, interest
rate forecasts for May and June using
this technique are 9.86% (9.69 + 0.17)

and 1 0 .0 3 % (9 .8 6 + 0 .1 7) ,
respectively.

Once again, the method of First
Differences is a short-run forecasting
tool. You might want to compare it to
Percent Changes in making 2 or 3
period forecasts. Your predictions are
probably strongest where the two
methods agree and weakest where they
diverge. The comparison, in other
words, should give you a "warm
fuzzy" or a "rigid frigid", or perhaps
both.

Past Averages

Finally, the Past Average routine
computes Percent Changes and First
Differences using any number of past
v a lu e s , w ith you te ll in g the
microcomputer how many.

For example, the mean of the past
two first differences is (9.69 — 9.52)
+ (9.52 — 9.09) all divided by 2, or
0.30. The microcomputer in this case
predicts a May 1984 interest rate of
9.69 + 0.30 = 9.99% .

The Past Average procedure is
ideally suited to forecasting situations
where a string or subset of past values
is deemed most important. It ignores
the long-term drift captured by Least-
Squares Trend and the method of Semi-
Averages, and avoids the short-run bias
of P ercen t C hanges and F irst
Differences.

Sum m ary

A time series is a group of observations
on a variable, in chronological order, at
a set frequency. Your microcomputer
program forecasts future values of a
time series using these extrapolation
techniques: (1) Least-Squares Trend,
(2) Sem i-A verages, (3) P ercen t
Changes, (4) First Differences and (5)
Past Averages.

All five methods suggest that
interest rates will rise in the near
future. And all five invoke the adage
"The past is prologue." If it isn ’t, then
perhaps we ought to have Madame
Zelna read our palms!

Listing Notes:

Brian Flynn provided the original
programs for the Apple II. Mike Rowe
has modified these so that they can
work on the Commodore 64, Atari and
the CoCo (with Flex), as well as the
Apple. The Listing 1 contains the
"generic" code. This will not work
w ith o u t th e sy ste m s p e c if ic
subroutines provided below. Listings 2
through 5 provide the required
subroutines for the Apple, Commodore
64, Atari and CoCo (with Flexl
respectively. These additional routines
must be added to Listing 1 in order for
the program to w ork on any
microcomputer.

Listing 1
10 REM TIME-SERIES FORECASTING

20 REM BY BRIAN FLYNN

30 REM MAY 1984

32 REM MODIFIED FOR COMMODORE 64, ATARI AND FLEX

34 REM BY MIKE ROWE, JULY 1984

40 REM INITIALIZE

50 GOSUB 1000

60 REM ENTER DATA

70 GOSUB 3000
80 REM EDIT DATA

90 GOSUB 3500

100 REM CHOOSE METHOD

110 GOSUB 5000
120 REM FORECAST

130 IF CH < > 6 THEN GOSUB 5500: GOTO 110
140 END
xx

INSERT SUBROUTINES FOR YOUR MICROCOMPUTER HERE

X X X X X X X XXX XXX XX XXX XXX XXX XX XXX XXX XX XXX XXX XX XXX X

1000 REM INITIAIZE
1010 REM TITLE

1015 DIM C$(6)
1020 GOSUB 1500

1030 REM INSTRUCTIONS

1040 GOSUB 2000

1050 REM CHOICES

1060 GOSUB 2500

1070 RETURN

1500 REM TITLE

1510
1520
1530
1540

1550
2000
2010
2020
2030
2040

2050
2060

2070

2080
2090
2100
2110
2120
2130
2140

2150

2160
2170

2500

2510

2520

GOSUB 300
VT=10: HT=15: GOSUB 400: PRINT "TIME-SERIES"
VT=11: HT=15: GOSUB 400: PRINT "FORECASTING"

FOR D = 1 TO 1000: NEXT D

RETURN

REM INSTRUCTIONS

REM MAXIMUM NUMBER OF OBSERVATIONS

DATA 150
READ MN

DIM Y(MN)

REM INSTRUCTIONS

GOSUB 300
PRINT " THIS PROGRAM FORECASTS FUTURE VALUES"

"OF A TIME SERIES USING A HOST OF TREND-"

"ANALYSIS TECHNIQUES."

" THE MAXIMUM NUMBER OF OBSERVATIONS"

"ALLOWED IS " ; M N ; "

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT "CHANGE LINE 2020 FOR A DIFFERENT LIMIT.1

VT=22: HT=14: GOSUB 400:

PRINT "PRESS ANY KEY

GOSUB 600

RETURN

REM CHOICES

DATA LEAST-SQUARES TREND, SEMI-AVERAGES,

PERCENT CHANGES

DATA FIRST DIFFERENCES, PAST AVERAGES, NONE

64 MICRO No. 75 ■ September 1984

2530 FOR I = 1 TO 6 5050 VT=2*I+3: HT=10: GOSUB 400: PRINT I;". ";C$(I)

"Y

2540 READ C$(I) 5060 NEXT I o2550 NEXT I 5070 VT=19: HT=10: GOSUB 400:
2560 RETURN PRINT "YOUR CHOICE = ?
3000 REM ENTER DATA 5080 GOSUB 800: GOSUB 600
3010 GOSUB 300 5090 CH = VAL(XX$) o
3020 PRINT " PLEASE ENTER OBSERVATIONS ON YOUR TIME" 5100 IF CH < 1 OR CH > 6 THEN 5080
3030 PRINT "SERIES. HIT 'RETURN' WHEN THROUGH." 5110 RETURN
3040 N = MN 5500 REM MAKE PROJECTIONS o3050 BK$ = " » 5510 REM NUMBER OF FUTURE PERIODS
3060 FOR I = 1 TO MN 5520 GOSUB 6000
3070 VT=6: HT=1: GOSUB 400 5530 REM PROJECTIONS
3075 PRINT "PERIOD #(";I;") = 5540 GOSUB 300 ©
3080 GOSUB 700 5550 IF CH <> 5 THEN VT=12: HT=13: GOSUB 400:3090 IF XX$ = "" THEN N = 1-1: I = MN: GOTO 3120 PRINT "FORECASTING ...
3100 IF XX$ <> "" THEN Y(I) = VAL(XX$) 5560 ON CH GOSUB 6500,7000,7500,8000,8500 o3110 VT=6: HT=18: GOSUB 400: PRINT BK$ 5570 REM DISPLAY V/
3120 NEXT I 5580 GOSUB 11500
3130 REM CHECK FOR ENOUGH DATA 5590 RETURN
3140 IF N > 2 THEN RETURN 6000 REM NUMBER OF FUTURE PERIODS o
3150 VT=21:HT=1:GOSUB 400 6010 GOSUB 300
3160 PRINT "SORRY, AT LEAST 3 OBSERVATIONS NEEDED !»: 6020 PRINT "THE LAST PERIOD OF YOUR TIME SERIES IS"

GOSUB 800: GOTO 3040 6030 PRINT "NUMBER ";N;"."
3500 REM EDIT DATA 6040 PRINT ©
3510 FOR L = 0 TO INT((N-l)/10) 6050 PRINT "HOW MANY PERIODS INTO THE FUTURE DO YOU"
3520 REM DISPLAY DATA 6060 VT=5: HT=20: GOSUB 400: PRINT BK$;: GOSUB 800:
3530 GOSUB 4000 VT=5: HT=1: GOSUB 400 ©3540 REM CORRECT DATA 6070 PRINT "WANT TO FORECAST ? : GOSUB 700
3550 GOSUB 4500 6080 NF = VAL(XX$)
3560 NEXT L 6090 IF NF < 1 THEN 6060
3570 RETURN 6100 REM CHECK FOR ENOUGH MEMORY ©
4000 REM DISPLAY DATA 6110 T = N+NF: IF T < = MN THEN RETURN
4010 GOSUB 300 6120 VT=22: HT=1: GOSUB 400
4020 PRINT "THESE ARE VALUES OF YOUR TIME SERIES:" 6125 PRINT "SORRY, ONLY ";MN-N; A4030 FOR J = 1 TO 10 " MORE PERIODS ALLOWED.";: GOTO 6060
4040 M = J+L*10 6130 RETURN
4050 IF M > N THEN 4060 6500 REM LEAST-SQUARES TREND
4055 VT=J+3: HT=1: GOSUB 400: 6510 REM KEY SUMS oPRINT "PERIOD (";M;") = ";Y(M) 6520 SX = 0:SY = 0:XQ = 0:YQ = 0:CP = 0
4060 NEXT J 6530 FOR I = 1 TO N
4070 RETURN 6540 SX = SX+I
4500 REM CORRECT DATA 6550 SY = SY+Y(I) ©
4510 VT=16: HT=1: GOSUB 400: 6560 XQ = XQ+I*I

PRINT "CORRECTIONS (Y/N) ? 6570 YQ = YQ+Y(I) t 2
4520 GOSUB 800: GOSUB 600 6580 CP = CP+Y(I)*I o4530 IF XX$ = "N" THEN 4660 6590 NEXT I
4540 IF XX$ < > "Y" THEN 4520 6600 REM A & B
4550 VT=18: HT=1: GOSUB 400: 6610 B = (N*CP-SX#SY)/(N*XQ-SX*SX)

PRINT "WHAT IS THE NUMBER OF THE DATUM TO" 6620 A = (SY-B#SX)/N ©
4560 VT=19: HT=16: GOSUB 400: PRINT BK$: GOSUB 800 6630 REM FORECASTS
4565 VT=19: HT=1:GOSUB 400 6640 FOR I = N+l TO T
4570 PRINT "BE CORRECTED ? : GOSUB 700 6650 Y(I) = A+B*I
4590 Q = VAL(XX$) 6660 NEXT I u
4600 IF Q > =(l+L*10) OR Q < =N OR Q < =(10+L*10) 6670 RETURN

THEN 4610 7000 REM METHOD OF SEMI-AVERAGES
4605 VT=21:HT=1:GOSUB 400 7010 REM NUMBER OF POINTS IN EACH GROUP o
4606 PRINT "OUTSIDE BOUNDS SHOWN. PLEASE TRY AGAIN.": 7020 G1 = INT(N/2)

GOTO 4560 7030 G2 = N-Gl
4610 VT=23: HT=1: GOSUB 400: GOSUB 800 7040 REM GROUP MEANS
4620 PRINT "NEW VALUE = : GOSUB 700 7050 Y1 = 0:X1 = 0 o
4640 Y(Q) = VAL(XX$) 7060 FOR I = 1 TO G1
4650 GOSUB 4000: GOTO 4510 7070 Y1 = Y1+Y(I)
4660 RETURN 7080 XI = Xl+I o5000 REM CHOOSE METHOD 7090 NEXT I
5010 GOSUB 300 7100 Y1 = Y1/G1:X1 = Xl/Gl
5020 PRINT "FUTURE VALUES OF YOUR TIME SERIES ARE" 7110 REM MEANS OF SECOND GROUP
5030 PRINT "PROJECTED USING ANY OF THESE METHODS:" 7120 Y2 = 0:X2 = 0 o
5040 FOR I = 1 TO 6 7130 FOR I = Gl+1 TO N

No. 75 ■ September 1984 MICRO 65

7140 Y2 = Y2+Y(I)

7150 X2 = X2+I
o 7160 NEXT I

7170 Y2 = Y2/G2:X2 = X2/G2

7180 B = (Y2-Y1)/(X2-X1)

q 7190 REM Y-INTERCEPT

7200 A = Y2-B*X2
7210 REM FORECASTS

7220 FOR I = N+l TO T

© 7230 Y(I) = A+B*I

7240 NEXT I

7250 RETURN

n 7500 REM PERCENT CHANGE

0 7510 FOR I = N+l TO T
7520 Y(I) = Y (1-1)*Y (I-1)/Y(1-2)

7530 NEXT I

© 7540 RETURN
8000 REM FIRST DIFFERENCE

8010 FOR I = N+l TO T

8020 Y(I) = 2»Y(I-l)-Y(I-2)

o 8030 NEXT I

8040 RETURN

8500 REM PAST AVERAGE
q 8510 PRINT "WOULD YOU LIKE TO USE AN AVERAGE OF"

8520 PRINT "PAST:"

8530 VT=4: HT=10: GOSUB 400: PRINT "1. % CHANGES"
8540 VT=6: HT=10: GOSUB 400:

© PRINT "2. FIRST DIFFERENCES"

8550 VT=8: HT=10: GOSUB 400:
PRINT "3. ACTUAL VALUES"

_ 8560 VT=12: HT=10: GOSUB 400: PRINT "CHOICE = ? ";

® 8570 GOSUB 800: GOSUB 600

8580 AV = VAL(XX$)

8590 IF AV < 1 OR AV > 3 THEN 8570

O 8600 IF AV = 1 THEN T$ = "PERCENT CHANGES"

8610 IF AV = 2 THEN T$ = "FIRST DIFFERENCES"

8620 ON AV GOSUB 9000,9000,9500
8630 GOSUB 300

O 8640 VT=12: HT=13: GOSUB 400:

PRINT "FORECASTING ..."

8650 ON AV GOSUB 10000,10500,11000
8660 RETURN

W 9000 REM t CHANGES OR FIRST DIFFERENCES
9010 VT=15: HT=1: GOSUB 400:

PRINT "HOW MANY PAST ";T$

© 9020 VT=16: HT=22: GOSUB 400: PRINT BK$: GOSUB 800

9030 VT=16: HT=1: PRINT "DO YOU WANT TO USE ? :

GOSUB 700

9040 PP = VAL(XX$)

© 9050 IF PP < 1 THEN 9020

9060 IF PP < N THEN RETURN

9070 VT=22: HT=1: GOSUB 400

q 9080 PRINT "SORRY, ONLY ";N-lj" ARE AVAILABLE":

GOTO 9020

9500 REM ACTUAL VALUES

9510 VT=15: HT=1: GOSUB 400:
© PRINT "HOW MANY PAST ACTUAL VALUES WOULD"

9520 VT=16: HT=19: GOSUB 400: PRINT BK$: GOSUB 800

9530 VT=16: HT=1: GOSUB 400:
_ PRINT "YOU LIKE TO USE ? : GOSUB 700

U 9540 PP = VAL(XX$)

9550 IF PP < 1 THEN 9520

9560 IF PP < = N THEN RETURN

© 9570 VT=22: HT=1: GOSUB 400
9580 PRINT "SORRY, ONLY ";N;" ARE AVAILABLE”:

GOTO 9520
10000 REM PERCENT CHANGES

© 10010 REM PAST AVERAGE

10020 PC = 0

10030 FOR I = N TO N-PP+1 STEP-1

10040 PC = PC+Y(I)/Y(I-1)

10050 NEXT I
10060 PC = PC/PP

10070 REM FORECASTS

10080 FOR I = N+l TO T

10090 Y(I) = Y(I-l)*PC

10100 NEXT I

10110 RETURN

10500 REM FIRST DIFFERENCES

10510 REM PAST AVERAGE

10520 FD = 0

10530 FOR I = N TO N-PP+1 STEP-1

10540 FD = FD+Y(I)-Y(I-1)

10550 NEXT I
10560 FD = FD/PP

10570 REM FORECASTS

10580 FOR I = N+l TO T

10590 Y(I) = Y(I-1)+FD
10600 NEXT I

10610 RETURN

11000 REM ACTUAL VALUES

11010 REM PAST AVERAGE

11020 AC = 0

11030 FOR I = N TO N-PP+1 STEP-1
11040 AC = AC+Y (I)

11050 NEXT I
11060 AC = AC/PP

11070 REM FORECASTS

11080 FOR I = N+l TO T

11090 Y(I) = AC

11100 NEXT I

11110 RETURN

11500 REM DISPLAY

11510 FOR L = 0 TO INT((NF-l)/10)
11520 REM HEADING

11530 GOSUB 12000
11540 REM BODY

11550 GOSUB 13000
11560 NEXT L

11570 RETURN
12000 REM HEADING

12010 GOSUB 300
12020 F$ = "======================================="

12030 PRINT F$
12040 VT=2: HT=16: GOSUB 400: PRINT "FORECASTS"

12050 PRINT F$
12060 VT=5: HT=1: GOSUB 400: PRINT "METHOD: ";C$(CH);

12070 IF CH = 5 THEN GOSUB 12500

12080 RETURN

12500 REM PAST AVERAGE

12510 PRINT " OF ";PP
12520 VT=6: HT=9: GOSUB 400

12530 IF AV = 1 THEN PRINT "% CHANGES"
12540 IF AV = 2 THEN PRINT "FIRST DIFFERENCES"

12550 IF AV = 3 THEN PRINT "ACTUAL VALUES"

12560 RETURN
13000 REM BODY

13010 FOR J = 1 TO 10
13020 M = J+LU0+N

13030 IF M > T THEN 13040

13035 VT=J+7: HT=1: GOSUB 400:
PRINT "PERIOD (";M;")= ";Y(M)

13040 NEXT J
13050 VT=21: HT=1: GOSUB 400: PRINT F$

13060 VT=22: HT=l4: GOSUB 400:

PRINT "PRESS ANY KEY

13070 GOSUB 600

13080 RETURN

66 MICRO No. 75 - September 1984

Subroutines
499 REM ** POSITION CURSOR AND PRINT SPACES **

200 HEM FLEX SUBROUTINES 500 GOSUB 400: PRINT SPC(SP);: RETURN

299 REM ** CLEAR DISPLAY **
599 REM ** GET SUBROUTINE **

o
300 PRINT CHR$(11);CHR$(27);"X";CHR$(24);:RETURN 600 GET XX$: RETURN

399 REM ** POSITION CURSOR **
699 REM ** INPUT SUBROUTINE ** o

400 IF VT> 0 THEN PRINT CHR$(ll);: 700 INPUT XX$: RETURN
FOR 11=1 TO VT:PRINT:NEXT II

410 IF H T > 0 THEN PRINT TAB(HT); 799 REM ** MAKE SOUND ** o
420 RETURN

800 PRINT CHR$(7);: RETURN

499 REM ** POSITION CURSOR AND SPACE ** *******************************
500 GOSUB 400: PRINT SPC(SP);: RETURN o
599 REM ** GET CHARACTER ROUTINE #*
600 INPUT XX$: IF XX$="X" THEN XX$=""
610 RETURN *** ATARI VERSION *** o

699 REM ** INPUT ROUTINE ** 200 REM ATARI SUBROUTINES
700 GOTO 600 o

299 REM ** HOME AND CLEAR DISPLAY **
799 REM ** MAKE SOUND (OPTIONAL) ** 300 PRINT CHR$(125);:RETURN
800 RETURN : REM ADD CODE HERE TO MAKE A
801 REM SOUND IF YOU SO DESIRE !! 399 REM ** POSITION CURSOR ** o

400 POSITION HT,VT:RETURN

499 REM ** POSITION CURSOR AND PRINT SPACES ** n* *
500 GOSUB 400
510 FOR 1=1 TO SP:PRINT CHR$(32):NEXT I:RETURN

200 REM COMMODORE SUBROUTINES

599 REM ** GET SUBROUTINE ** o
299 REM ** HOME AND CLEAR DISPLAY ** 600 GET it<l,X:XX$=CHR$(X):RETURN
300 PRINT "{CLEAR}";:RETURN

699 REM ** INPUT SUBROUTINE **
399 REM ** POSITION CURSOR ** 700 INPUT XX$:RETURN o
400 PRINT "{HOME}";
410 FOR XX=1 TO VT:PRINT :NEXT XX 799 REM ** MAKE SOUND **
420 IF HT> 0 THEN PRINT TAB(HT); 800 RETURN o
430 RETURN 810 REM ADD YOU OWN SOUND IF DESIRED

499 REM ** POSITION CURSOR AND SPACE ** *** THE NEXT TWO LINES MUST BE ADDED ***
500 GOSUB 400: PRINT SPC(SP);: RETURN o

1015 DIM BK$(10),XX$(10),T$(20),F$(40)
599 REM ** GET SUBROUTINE ** 1016 OPEN #1,4,0, "K:"
600 XX$=""

610 GET XX$: IF XX$="" THEN 610 *** LINE 1060 AND LINES 2500 TO 2560 MUST BE DELETED o
620 RETURN

*** REPLACE LINES 5050 AND 12060 AS FOLLOWS:
699 REM ** INPUT SUBROUTINE ** o
700 PRINT {SPACE10,BACKSPACE10};: INPUT XX$: RETURN 5050 VT=2*I+3:HT=10:GOSUB 400:PRINT I;". :

GOSUB 14000
799 REM ** MAKE SOUND (OPTIONAL) **
800 RETURN : REM ADD CODE TO MAKE A 12060 VT=5:HT=1:GOSUB 400:PRINT "METHOD: : o
801 REM SOUND IF YOU SO DESIRE !!! GOSUB 14005

********************************* * * * ADD THE FOLLOWING SUBROUTINE o
14000 ON I GOTO 14010,14020,14030,14040,14050,14060

14005 ON CH GOTO 14010,14020,14030,14040,14050,14060

14010 PRINT "LEAST-SQUARES TREND";:RETURN o
14020 PRINT "SEMI-AVERAGES";:RETURN

200 REM APPLE II SUBROUTINES 14030 PRINT "PERCENT CHANGES";:RETURN
14040 PRINT "FIRST DIFFERENCES";:RETURN

299 REM ** HOME AND CLEAR DISPLAY ** 14050 PRINT "PAST AVERAGES"; .-RETURN
©

300 HOME : RETURN 14060 PRINT "NONE";:RETURN

399 REM ** POSITION CURSOR ** A
400 IF VT> 0 THEN VTAB(VT)

410 IF HT> 0 THEN HTAB(HT)

420 PITURN

No. 75 ■ September 1984 MICRO 67

Title: Mastering Your Atari Through Eight BASIC Projects
Author: the staff of MICRO magazine, Tom Marshall ed.
Price: $19.95, disk included
Publisher: Prentice-Hall

Title: The Apple lie Book
Author: Bill O'Brien
Price: $12.95
Publisher: Bantam Books

Using a 'learning-by-doing' approach the reader is
quickly taught how to write, modify, and expand his own
programs.
A diskette is included which contains complete running
programs to begin with. The eight projects include Micro
Calc, a miniature spreadsheet; Master, a guessing game;
Atari Clock; Word Detective; Atari Player, a music
program; Breakup, an exciting game; Sorting, sorts; graphic
bars and telephone directory; Programmable Characters,
add extra plotting resolution while retaining most normal
characters in the Atari character set. Each project is
designed to teach the reader a specific aspect of
p rog ram m in g — strin g m a n ip u la tio n , BA SIC
functions, random numbers and flags, ON...GOSUB,
character graphics, animation, sorting methods, plus
many more. There are listings for all the programs, clear
operating instructions, examples and figures. Each
programming element is explained with clarity and related
to the project the reader is working on. This book presents
learning and mastery with hands-on experience and fun.
This is the second in a series of 'Mastering' books, the first
was for the Vic-20, the next is for the Commodore 64.

Level: Beginner to intermediate.

Bantam was selected by Apple to be among those who
introduced the lie. Providing information that is useful to
novices and advanced users, it includes data not found in
the owner's manual. Compatability, configuration, DOS
3.3 and ProDOS are all covered. The addition of
peripherals features mice, touchpads, graphics tablets, and
the new 'flat screen.' BASIC (Applesoft) is explained in as
much as one can in three chapters. Graphics is also touch­
ed upon. Telecommunications - i.e. the connections of
modems, bulletin boards, etc. are dealt with in one
chapter. Another chapter is devoted to troubleshooting,
hardware and software problems. The four most used ap­
plications — Word Processing, Databases, Spreadsheets,
and Communications are introduced and reviewed. The
last chapter contains vital information on user groups,
bulletin boards, magazines and books. The appendices
contain hardware information, technical stats and Escape
codes. This books covers a lot of ground and hence is
limited in the depth of coverage. However it does contain
a great deal of useful information and has gathered some
information not easily found elsewhere.

Level: beginner to advanced.

Title: Getting On-Line
Author: M. David Stone
Price: $14.95
Publisher: Prentice-Hall, Inc.

The field of telecommunications is constantly growing
and at a startling rate. Finding out how, what and where is
a time consuming and often confusing task. It is the pur­
pose of this book to help both the novice and old-hand at
sorting out what they need, where to get it, and how to use
it. The first six chapters explain what you need before you
actually go on-line. Chapter 1 Information Utilities — a
look at what is available and where it came from, ex­
amines kinds of information utilities and data bases.
Chapter 2 Hardware Utilities — covers dumb terminals,
smart terminals and computers as terminals. Chapter 3
Hardware II — deals with modems, baud rate, signaling
standards, connecting a modem, direct connect vs.
acoustical connect modems and choosing a modem.
Chapter 4 Software Part I — a look at available features,
computers as dumb and smart terminals, smart terminal
programs; basic features and additional capabilities.
Chapter 5 Software Part II — the nitty gritty, RS-232,
short reviews and helpful hints regarding some popular
micros, CP/M computers, dual processor machines and
modems. Chapter 7 Search Strategy deals with how to go
about organizing your search for information, with tips
that can save you money and time. The rest of the book
consists of a catalog of information and an index. The
catalog is of the various utilities (Dow Jones, The Source,
etc.), and free services (Public Access Bulletin Boards).

Level: Beginner to advanced.

Title: Introduction to C
Author: Paul M. Chirlian
Price: $15.95
Publisher: Matrix Publishers, Inc.

As the title says this is an introduction to the program­
ming language C. It is designed so that even those who
have no previous programming experience will be able to
learn C. Starting out with some basic ideas about com­
puter operation, it moves on to some of the fundamental
concepts of programming in C. Fundamental arithmetic
operations are explained: integer, floating-point, hierar­
chy, mixed mode, constants, etc. The next area is basic
input, output and character operations including the use of
the 'printf' statement and strings. The author stresses
structured programming and documentation, devoting a
large section of the book to these topics. The debugging
process is outlined, a subject seldom covered. There are a
number of good exercises and over 70 example programs.
Arrays, pointers, and manipulations are covered in detail.
File handling is discussed, input/output redirection, disk
files, and command line input of data. The appendices
contain C Keywords, C Operators, and the ASCII Codes.
Chirlian has chosen to follow the standards set forth by
Brian W. Kernighan and Dennis M. Ritchie in their book
‘T h e C Program m ing Language,' P ren tice-H all,
Englewood Cliffs, N.J. 1978. This book and Chirlian's are
considered the standard books on C programming.

Level: Beginner to intermediate.
JMCftO

68 MICRO No. 75 • September 1984

Name: Cardboard/5
System: Commodore 64

Description: This product allows
greater flexibility of use to switch
se lec t any cartridge slo t or
combination of cartridge slots. The
22 color coded lights emit diodes to
give status indication. Each slot has
four LEDS and two toggle switches
for indication and control. It allows
the user supply power to a cartridge
without allowing it to auto-start or
to effect other operations.

Price: $79.95
Available: Cardco, Inc.

313 Mathewson
Wichita, KS 67214

Name: Computereyes
System: Apple II Series &

Compatibles
Memory: 48K
Language: Applesoft & DOS 3.3

Description: This is a slow-scan
device that connects any standard
video source (video tape recorder,
video camera, videodisk, etc.) and
the Apple's game I/O socket. A
multi-scan mode provides realistic
grey-scale images. Included in the
package: interface module, cable,
software support on disk, owner's
manual and also comes with a one
year warranty. Versions for other
popular computers will be available
soon.

Price: $129.95
$10.00 demo disk (not
required)

Available: Digital Vision, Inc.
14 Oak Street - Suite 1
Needham, MA 02192
(617) 444-9040

BOUNTY HUNTER
Journey back with us into the days of Jessie James and
Billy the Kid where the only form of justice was a
loaded revolver and a hangman’s noose. In this full-
length text adventure, you play the role of Bounty
Hunter, battling against ruthless outlaws, hostile
Indians, wild animals and the elements of the
wilderness with only your wits and your six {jun.
Average solving time: 80-30 hours. If you love adven­
tures, this one is a real treat. Available for COMMO­
DORE 64, the VIC-20 (with expander), and C0LEC0
ADAM. See your dealer.

mm*
$1995

Cassette

Published by:

y'^Star-Byte, Inc.
D ivision of R o b in so n -H a lp em C o m p a n y

2564 Industry bane • Norristown, PA 19403 • 215-539-4300

ADAM is a tradem ark of Coteca Inc COMMODORE 64 is a trademark of Commodore
Business Machines, Inc V IC-20 is a tradem ark of Commodore Business Machines, Inc

No. 75 • September 1964 MICRO 69

Name: Microsport
Microcomputers Model
M M C/02

System: AIM 65, Apple II, Atari
400,800, Commodore
CBM/PET series, KIM-1,
KIM-4, Vic-20, MTU
1300 and motherboards,
Ohio Scientific 600 and
others, Synertek SYM-1.

Description: The Model MMC/02
is a complete microcomputer on a
4 .5 ” by 6 .5” PC board. It features a
6502 m icroprocessor, IK Ram
standard, 4K ROM/EPROM socket,
2K RAM or R O M /EP R O M
expansion and BUS for ading up to
16 I/O devices. Three basic versions
are available. The MMC can operate
from a regulated plus 5VDC power
source. The CPU addresses a total of
8K, enough for m ost control
applications. There is a prototyping
area as well as spare gates.

Price: From $159.00*
Available: R.J. Brachman

Associates, Inc
P.O. Box 1077
Havertown, PA 19083
(215) 622-5495

Name: Cheatsheet
System: Commodore VIC 20,

C-64

D escrip tion : These are p lastic
la m in a te d keyboard overlays
designed to fit over the keyboard
su rro u n d in g th e k ey s w ith
commands and controls grouped
together for easy references. The
latest cheatsheets available are:
Logo (sheet 1], Logo (sheet 2,
advanced), P ilo t, Easy C alc,
P rin t e i - 15 2 6 , T h e M an ager,
Multiplan, Practicalc 64 (& plus),
Printer (Epson-RX-80), Superbase
64, The Consultant, Sprites Only
and blanks. This brings the total
cheatsheets available to 33.

Price: $3.95 plus $1.00 shipping
per order

Available: Cheatsheet Products
P.O. Box 8299
Pittsburgh, PA 15218
(412) 456-7420

EMC

UNLIMITED PRO FIT POTENTIAL @
W ATCH O U T W ALL STR EET!! Now available on floppy disk for
brokers and active traders. The AMAZING computer program
«STO CKER1 » uses new Moving Window-Spectral algorithm to fore­
cast stock/commodity market TU R N IN G P O IN TS —not more trend
line/moving averages. Affordable! Easy to use!

USED BY STOOlVCOflMDDITV BROKERS t ACTIVE IRflDERS
P e rh a p s you to o a r e re a d y - fo r th e STOCKER! c h a l l e r ^ e 1

N E W ! Your ow n p e rs o n a l forecast.

COMPARE There is ;ust nothing quite like it S T O C K E R 1 >» a u o i la h io t
■ S T O C K E R 1 .. fo re c a s t lo r Ih e D ow Jones « » T O C K E H l .> a va ila b le for

i n d u s t r i a l 3v e ^ 3 Q e d 3 ily c l o s m Q w i th y o u r cur~ t o m p r ' p /™1 r Y * r
r e n t m e t h o d . 1 D n * r L - ’ r t w * J r ? * ! " j - j -

 _ _ A P P L E I I , I I + , I l e -
• o r .o x H r M l i6 > i i 0 • a a W i t h Z —S 0 c a r d

n«(n .-.ua« of * . r r , r 0-; 1-2 i-J 3-fc k-J 5-6 6-7 7-0 9-9 T R S 3 0 M 0 D I I I l 4 - 1

»l_OT OF CCTUaL 0>.D fOBECtiSr FQS COwpoBISON I I 7 1 I 1 £ Mi P ' tllJHl
P' f i t 19 ronl n„«

--. * 2 9 9 nflsreR/visfl/acra
- includes free tCUR ON iddeh service

; • pve erros uxdeh 2*

~ ENGINEERING
MANAGEMENT

eaeeaaeeee: 1! i i i: t i t C O N S U L T A N T
ei 114*567890] _'.a5e7e301 i3*3£783e)13»3fc7e3eiCJa367B9

r - : • ; ;
output: ./li/e : P.O. Box 312

W E E K L Y / M O N TH LY / Q U A R T ER L Y too
In ve s t T ra d e O p tio n s F u tu re s Fairfax. Va. 22030

D O M y o u r b r o s s r u s * S T O C K E R l -> T e l , (703) 425-1296.

m ic/to&e

In Micro No. 73 (July) Ian R. Humphreys ‘CMPRSS’
program the following lines should read:

9002 8D F6 03

9007 8D F7 03

92E5 A9 A9
932E A9 EE
9400 69 FF

9402 85 03

PRT1A

STA BJP+1
STA BJP+2

LDA #< MESS1
LDA #<■ MESS1A
ADC #$FF

STA NEWPTR+1

NOTE: It is the policy of Micro to not include all of the
hex code for assembled text. Due to space limitations we
include only the first three bytes of the assembled
message. This practice is carried throughout all of our
assembler listings. We apologize for any confusion this
may have presented and also any inconvenience to those
who are not using an assembler.

70 MICRO No. 75 • September 1984

C<fte ---------------
by Mark S. Morano

It all started two months ago when I received a call
from the BES |Bureau of Encryption Sendees). They were
having trouble with data security between their micros
and mainframes. The problem was thought to be origin­
ating from inside. Regardless of what new encryption
methods were developed, the unknown informant would
render them useless. And so the Bureau had decided to
seek outside help. Due to our years of experience in the
field, Micro was given the job. Our resident expert in
this area, Mike Rowe, was assigned the task of developing
new encryption methods that would prove effective
against prying thieves.

All went well until three weeks ago when Mike went
on vacation. He called on the day he was to return saying
he'd been delayed by a death in the family. We immed­
iately informed the BES of the delay and the reason for it.
The following day the Bureau contacted his family. They
hadn't heard from him. Needless to say there had been no
funeral. We were told to call the Bureau immediately if we
heard from Mike. They assured us that they would locate
him, but a week passed and still no sign of Mike. I began
to worry. I have known Mike for a long time and knew he
wasn't the kind of guy to up and disappear. The whole
thing sounded strange. That is, until the other night.

I was working late, downloading some files from a
local mainframe we use for mass storage. While looking at
the catalog I noticed a file named 'test.m r’. It was nothing
unusual to find a test file, but we never used the extension
'm r'. I downloaded the file to check it out. At first it
seemed to be a garbled mess, as though something strange
happened during transmission. I decided that there must
have been a surge on the wires, or a lost handshake
somewhere, so I downloaded again. As I did I thought
about the strange extension — 'mr' — of course, Mike
Rowe — it must be one of his work files, but he always
named his ‘tem p.tst1. I started to examine the file more
closely; it still seemed like a bad transmission to me.
Perhaps I would find a clue on his desk. After rummaging
around piles of paper, I found what I was looking for, a
folder marked'Top Secret’ in big red letters with hand-
painted stars and spaceships scattered about. With folder

in hand I went back to my desk. I printed out M ike's file,
carefully perused it, and then started pouring through the
'Top Secret' folder in hope of an answer. As I sifted
through countless encryption methods, I suddenly came
upon one dated three days before Mike went on vacation.
He had mentioned he was onto something hot and had
pulled an all nighter the Thursday before he left. As I
compared his examples and 'test.m r' I knew I had it. Two
hours later I had decoded the mystery file.

At first I thought it was a gag, but it soon became
evident it wasn't. The text explained that he had been
picked up by a couple of woman; the next thing he
remembered was passing out. He woke to find himself
locked in a room with a desk, a couple of terminals, a
printer and a modem. He was instructed over an intercom
to recompose the latest encryption method he had devised.
He was able to convince his captors that he had to access
some files from the mainframe Micro used. While online
he sent over this dummy work file I had found. I later
found out he had given this new encryption method to the
Bureau before he left for vacation. It seems that now
someone else wanted it too. Mike stated in 'test.m r' that
his method would be used to send important data over the
lines sometime during the next month. He asked me to in­
form the Bureau of his plight, destroy 'test.m r' and any
files associated with his work. His last request was that I
quickly come up with some alternate encryption methods
for the BES to use in place of his.

Well, in all honestly, I have limited experience in this
area. So I decided to tap the brains of some people I know.
After considering different suggestions, I finally came to
the conclusion that you, the readers of Micro, could prob­
ably help the most. By gathering a variety of encryption
methods, I could distill one final product that would
ensure security and stymy any intruder. And so, I ask you
to help me out in this time of need. Please send your
encryption schemes and solutions to me, using the sen­
tence 'When the crow flies west, the sun shall set in the
east.' Any encryption methods you can or have devised
will be of great value and an important link in forging a
chain that only Mike Rowe himself could crack.

No. 75 ■ September 1984 MICRO 71

A dvertiser’s Index

A nalog ..,........................... 6
C a l l A . P . P . L . E ... 1
Cardco , Inc:.. 69
C h e a t s h e e t P rodu cts ... 70
D ig ita l V is ion .. 69
Engineering M an ag em en t .. 70
H ayes M icr o c o m p u te r Products B a c k C v r
|QB Enterprises .. 46
Lazerware .. 35
M I C R O ... 6 0 , Ins B a c k Cvr
M icr o M o t io n ... 8 , 3 0
M icr o T e c h n o lo g y U n l im ite d ... 3
M icro -W D is tr ib u t in g .. 17
M id w e s t M icro .. 9
N ik r o m T e c h n i c a l P roducts ... 2
P erfo rm an ce M ic r o ... 17
Progressive Peripherals .. 12
P ro te cto ... 3 8 , 3 9 ,4 0 , 4 1 , 4 2 , 4 3
Q u a n t u m Softw are ... 45
R 1 B r a c h m a n .. 70
S-C Softw are .. 45
S k y les E lectr ic W ork s .. Ins Front Cvr
S pecia l ty E le ctron ics ... 14
Star Byte ... 69
S u ch -A -D e a l Software .. 53

Coming in October —

□ Plotting Binary Trees
by Luthei K. Bianting
Graphic displays of tree-like decision paths aid
using and understanding this type of graph

□ Fat Bit Map Plotting
by Loren Wright
Assembly language routines to support bit map
plotting on the Commodore 64

□ Data Base Comparisons
by Sanjiva Nath
Discussion of the features to look for in selecting
a data base manager for your micro

□ Rational Joystick Interfacing
by Charles Engelsher
A 'built-it yourself' project to add a joystick to
your system and learn about A/D conversion

□ FORTH Input Utility
by M ike Dougherty
A method of providing interactive text input for
better applications

Solution to last month’s (#74

Lyte Bytes puzzle.

Hi3i3E!0I10
AHSF1 SI i«4r2 is]

I3I3E3 Si h2!IE3Q!1E9
pi

3 Q 3 f l w a a a B H O i 3 d dan la imimmim&fMim
J □ aa 0 £EJBK3E1

v S L i i i t f t f f i E B i i a K a n i a i a H a n r a

onaraa ra h .m nri en riiintfEra 3 sa
p 3F1K3V1E3 f!

ft] ri a

ra h a r;j
ra d a a h

g _______________

72 MICRO No. 75 ■ September 1984

This fam ous book now con ta ins the m ost com prehensive descrip tion o f firm w are
and hardware ever published fo r the whole Apple II family. A new section w ith
guide, a tlas and gazeteer now provides Apple lie spec ific in fo rm ation .

• G ives names and loca tions o f various Monitor, • A llow s easy m ovem ent between BASIC and
DOS, Integer BASIC and Applesoft routines and M achine Language
te lls w hat they ’re used for • Expla ins how to use the in fo rm ation for easier,

• L is ts Peeks, Pokes and Calls in over 2000 better, fas te r so ftw are w riting
mem ory loca tions

This expanded edition is available at the new low price of only $19.95

For the 35,000 people who a lready own previous ed itions ,
the lie Appendix is ava ilab le separate ly fo r ju s t $5.00.

Please send me:
__________W hat’s W here in the Apple @ $19.95 e a . ___________ __

(Plus $2.00 per copy shipping/handling) Name

__________ Apple lie Appendix @ $5.00 e a . __________ Address
(includes shipping charges)

Mass residents add 5% sales tax $ __________ city State Zip

Total Enclosed $ __________ Signature__

□ Check □ VISA □ MasterCard
For faster service

Phone 617/256-3649
Acct # ________________________ Expires___________

MICRO, P.O. Box 6502, Chelmsford, MA 01824

Communicating is so easy with a com

Apple. Hayes Smartmodem 300n
convenient direct-connect modem for
the Apple lie. And Hayes Micromodem
Ile’ls tht
for the A
Packaged with Smartcom I™

ayes Mia
e easily installed board modem
Vpplell, He. Ill, and Apple Plus.
:awith “

V t
I

companion
software,
both provide
a complete
telecomputing
system. And best of all, both systems
are from Hayes, the established tele­
computing leader!

We connect you to all the right
places. Bulletin boards, databases,
information services—naturally. And
that’s just the beginning. Let your
Apple plan your travel itinerary,
including flight numbers, hotel and
rental ca servations. Watch it
retrieve and analyze daily stock and
options prices. Work at home and
send reports to and from your office.
You can even do your gift shopping
by computer!

Would you care to see our menu?
Make your selection. Really. With
Smartcom I, you just order up what

r Apple
1-103 tyt

modems allow your
nicate with any Bell-
over ordinary telephone
simply connect directly into a mod­
ular pnone jack, to perform both
Touoi-Tbne*and pulse dialing. Hayes

type modem
z lines. You

Smartmodem 300 and Micromodem
lie both transmit at 110 or 300 bits per
second, in either half or full duplex.

/
you want to do. The program guides
you along the way. You can create, list,
name, send, receive, print or erase
files right from the menu. From the
very first time you use it, you'll find
telecomputing with Hayes as easy
as apple pie!

We’ve got your number! We know
that^ou want a system that's flexible,

‘ ‘ " versatile and accommo-
¥ dating. The Smart-

modern 300/Smartcom I
system accepts ProDOS™

______ Pascal and CP/M'operating
systems. The Micromodem He/
Smartcom I system accepts DOS 3.3,
Pascal and CP/M operating systems.

Smartcom I also provides you with
a directory of the files stored on your
disk. And will answer calls to your sys­
tem. without your even being there"

Your Apple s telephone goes any­
where tne phone lines go. Hayes

to commu-

Follow the leader. Over the years
we’ve built our reputation as the
telecomputing leader by developing
quality products that set industry stan­
dards. Now we invite you to see for
yourself iust how simple it is to add
powerful, easy to use telecomputing
capabilities to your Apple computer
with a complete, reaay-to-go system
from Hayes. Visit your Hayes dealer
for a hands-on demonstration. And
get on line
with the
world.

Hayes.
We re here
to help.

Hayes Microcomputer Products, Inc.
5923 Peachtree Industrial Blvd.
Norcross. Georgia 30092.404/441-1617.

Sm artm odem 300 and S m artcom I a re tradem arks and M icrom odem lie is a registered tradem ark of Haves M icrocom puter Products. I n c Apple is a registered tradem ark, and ProDOS is a tradem ark of
Apple Computer, Inc. Touch-Tbne is a registered service m ark o f A m erican Tfelepnone and "telegraph. CRM is a registered tradem ark o f Digital R esearch. Inc. © 1984 Hayes M icrocom puter Products. In c

